Solutions Sheet 2

LOCALIZATION AND THE HILBERT NULLSTELLENSATZ

Let A be a commutative ring, k an algebraically closed field.

- 1. Let A, B be two commutative rings, $f: A \to B$ a ring homomorphism.
 - (a) Show that, for every ideal $\mathfrak{b} \subset B$, the preimage $f^{-1}(\mathfrak{b})$ is an ideal in A (it is called the *contraction* of the ideal \mathfrak{b} , and it is denoted by \mathfrak{b}^c).
 - (b) Show that the image $f(\mathfrak{a})$ under f of an ideal $\mathfrak{a} \subset A$ need not be an ideal in B. (For any ideal $\mathfrak{a} \subset A$, the ideal \mathfrak{a}^e of B generated by $f(\mathfrak{a})$ is called the *extension* of the ideal \mathfrak{a} .)
 - (c) Show that the contraction of a prime ideal is always a prime ideal, while the extension of a prime ideal need not be a prime ideal.
 - (d) Prove the following inclusions:
 - i. $\mathfrak{a} \subset \mathfrak{a}^{ec}$ for every ideal $\mathfrak{a} \subset A$;
 - ii. $\mathfrak{b} \supset \mathfrak{b}^{ce}$ for every ideal $\mathfrak{b} \subset B$;
 - iii. $\mathfrak{a}^e = \mathfrak{a}^{ece}$ and $\mathfrak{b}^c = \mathfrak{b}^{cec}$ for any ideals $\mathfrak{a} \subset A$, $\mathfrak{b} \subset B$.
 - (e) Let $\mathfrak{a}_1, \mathfrak{a}_2 \subset A, \mathfrak{b}_1, \mathfrak{b}_2 \subset B$ be ideals. Prove that:
 - i. $(\mathfrak{a}_1 + \mathfrak{a}_2)^e = \mathfrak{a}_1^e + \mathfrak{a}_2^e, (\mathfrak{b}_1 + \mathfrak{b}_2)^c \supset \mathfrak{b}_1^c + \mathfrak{b}_2^c;$
 - ii. $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e \cap \mathfrak{a}_2^e, \ (\mathfrak{b}_1 \cap \mathfrak{b}_2)^c = \mathfrak{b}_1^c \cap \mathfrak{b}_2^c;$
 - iii. $(\mathfrak{a}_1\mathfrak{a}_2)^e = \mathfrak{a}_1^e\mathfrak{a}_2^e, \ (\mathfrak{b}_1\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c\mathfrak{b}_2^c;$
 - iv. $r(\mathfrak{a}_1)^e \subset r(\mathfrak{a}_1^e), r(\mathfrak{b}_1)^c = r(\mathfrak{b}_1^c).$

Solution.

(a) Let b ⊂ B be an ideal. Then clearly f⁻¹(b) is an additive subgroup of A because f is in particular an homomorphism between the additive groups (A, +) and (B, +). Moreover, if x ∈ A and a ∈ f⁻¹(b), then f(a) ∈ b, hence f(xa) = f(x)f(a) ∈ b, because b is an ideal. We deduce that xa ∈ f⁻¹(b), which is therefore an ideal.

- (b) Take $A = \mathbb{Z}$, $B = \mathbb{Q}$, $f : \mathbb{Z} \to \mathbb{Q}$ the canonical inclusion map. Take $\mathfrak{a} = \mathbb{Z}$, the whole ring. We have that \mathbb{Z} is not an ideal in \mathbb{Q} , since the latter is a field.
- (c) Assume that $\mathfrak{b} \subset B$ is a prime ideal, and let us show that $f^{-1}(\mathfrak{b})$ is prime (we already now that it is an ideal). First, \mathfrak{b}^{-1} is proper since $1 \notin \mathfrak{b}^{-1}$. Then, if $x, y \in A$ are such that $xy \in f^{-1}(\mathfrak{b})$ and $x \notin f^{-1}(\mathfrak{b})$, then $f(xy) = f(x)f(y) \in \mathfrak{b}$ and $f(x) \notin \mathfrak{b}$. Since \mathfrak{b} is prime, this forces $f(y) \in \mathfrak{b}$, which implies $y \in f^{-1}(\mathfrak{b})$. Thus $f^{-1}(\mathfrak{b})$ is prime. We now want to show that the extension of a prime ideal need not be prime. Again, take $A = \mathbb{Z}, B = \mathbb{Q}$, and f the canonical inclusion map. Let $p \in \mathbb{N}$ be a prime number; then the principal ideal $(p) \subset \mathbb{Z}$ generated by p in \mathbb{Z} is prime. However, since \mathbb{Q} is a field, the extension $(p)^e$ must be equal to the

whole \mathbb{Q} , which is not a proper ideal of itself, hence it cannot be prime.

(d) i. Let $\mathfrak{a} \subset A$ be an ideal. Then

$$\mathfrak{a}^{ec} = f^{-1}(\mathfrak{a}^e) = f^{-1}(\langle f(\mathfrak{a}) \rangle) \supset f^{-1}(f(\mathfrak{a})) \supset \mathfrak{a}$$
.

ii. Let $\mathfrak{b}\subset B$ be an ideal. Then

$$\mathfrak{b}^{ce} = \langle f(\mathfrak{b}^c) \rangle = \langle f(f^{-1}(\mathfrak{b})) \rangle \subset \langle \mathfrak{b} \rangle = \mathfrak{b} ,$$

the last equality holding because every ideal clearly coincides with the ideal it generates.

- iii. It follows form the previous two points, just as in part (g) of Exercise 14 in the first exercise sheet.
- (e) i. First, $\mathfrak{a}_1^e + \mathfrak{a}_2^e$ is an ideal in *B* containing $f(\mathfrak{a}_1 + \mathfrak{a}_2)$, which by definition of the extension yields $(\mathfrak{a}_1 + \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e + \mathfrak{a}_2^e$. Conversely, $(\mathfrak{a}_1 + \mathfrak{a}_2)^e$ is an ideal containing both \mathfrak{a}_1^e and \mathfrak{a}_2^e , hence by definition of the sum we deduce that $\mathfrak{a}_1^e + \mathfrak{a}_2^e \subset (\mathfrak{a}_1 + \mathfrak{a}_2)^e$.

The very same reasoning shows also that $\mathfrak{b}_1^c + \mathfrak{b}_2^c \subset (\mathfrak{b}_1 + \mathfrak{b}_2)^c$.

- ii. It is clear that both \mathfrak{a}_1^e and \mathfrak{a}_2^e contain $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e$, which proves that $(\mathfrak{a}_1 \cap \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e \cap \mathfrak{a}_2^e$. Since taking the inverse image preserves all set theoretic operations, we immediately infer from this that $(\mathfrak{b}_1 \cap \mathfrak{b}_1)^e = \mathfrak{b}_1^e \cap \mathfrak{b}_2^e$.
- iii. The ideal $\mathfrak{a}_1^e \mathfrak{a}_2^e$ contains $f(\mathfrak{a}_1 \mathfrak{a}_2)$, hence $(\mathfrak{a}_1 \mathfrak{a}_2)^e \subset \mathfrak{a}_1^e \mathfrak{a}_2^e$. Conversely, the ideal $(\mathfrak{a}_1 \mathfrak{a}_2)^e$ contains all products xy for $x \in \mathfrak{a}_1^e$ and $y \in \mathfrak{a}_2^e$, hence it must contain the product ideal $\mathfrak{a}_1^e \mathfrak{a}_2^e$.

The last argument applies verbatim to show that $(\mathfrak{b}_1\mathfrak{b}_2)^c \supset \mathfrak{b}_1^c\mathfrak{b}_2^c$.

iv. Let y = f(x) for some $x \in r(\mathfrak{a}_1)$. There exists an integer n > 0 such that $x^n \in \mathfrak{a}_1$; thus $y^n = (f(x))^n = f(x^n) \in f(\mathfrak{a}_1) \subset \mathfrak{a}_1^e$, which means that $y \in r(\mathfrak{a}_1^e)$. By definition of the extension, we deduce that $r(\mathfrak{a}_1)^e \subset r(\mathfrak{a}_1^e)$. Assume $x \in r(\mathfrak{b}_1)^c$, which is equivalent to $f(x)^n = f(x^n) \in \mathfrak{b}_1$ for some integer n > 0. Hence $x^n \in f^{-1}(\mathfrak{b}_1) = \mathfrak{b}_1^c$, which gives $x \in r(\mathfrak{b}_1^c)$. The converse inclusion is analogous.

- 2. In this exercise, we shall examine more closely the particular case of Exercise 1 in which $B = A[S^{-1}]$, the ring of fractions of A with denominators in a multiplicative subset $S \subset A$, and $f: A \to A[S^{-1}]$ is the canonical ring homomorphism.
 - (a) Let $\mathfrak{a} \subset A$ be an ideal. Show that $\mathfrak{a}^e = \mathfrak{a}[S^{-1}]$, where the latter is defined by

$$\mathfrak{a}[S^{-1}] = \{as^{-1} : a \in \mathfrak{a}, \ s \in S\}$$

- (b) For any ideal $\mathfrak{b} \subset A[S^{-1}]$, show that there exists an ideal $\mathfrak{a} \subset A$ such that $\mathfrak{a}^e = \mathfrak{b}$. Deduce that if $\mathfrak{b}_1 \subsetneq \mathfrak{b}_2$ are ideals in $A[S^{-1}]$, then $\mathfrak{b}_1^c \subsetneq \mathfrak{b}_2^c$.
- (c) For any ideal $\mathfrak{a} \subset A$, show that equality $\mathfrak{a}^e = A[S^{-1}]$ holds if and only if $\mathfrak{a} \cap S \neq \emptyset$.
- (d) Prove that the map $\mathfrak{p} \mapsto \mathfrak{p}[S^{-1}]$ defines a one-to-one correspondence between prime ideals \mathfrak{p} in A such that $\mathfrak{p} \cap S = \emptyset$ and prime ideals in $A[S^{-1}]$. Deduce that, if \mathcal{R} denotes the nilradical ideal of A, then the nilradical ideal of $A[S^{-1}]$ is $\mathcal{R}[S^{-1}]$.
- (e) Assume that $S = A \setminus \mathfrak{p}$, where $\mathfrak{p} \subset A$ is a prime ideal. Deduce from the previous point that the prime ideals of the local ring $A_{\mathfrak{p}}$ are in one-to-one correspondence with the prime ideals of A contained in \mathfrak{p} .

Solution.

- (a) The inclusion $\mathfrak{a}[S^{-1}] \subset \mathfrak{a}^e$ is clear. Moreover, $\mathfrak{a}[S^{-1}]$ clearly contains $f(\mathfrak{a})$, so we just need to prove that $\mathfrak{a}[S^{-1}]$ is an ideal in order to get the reverse inclusion. This is immediate from the fact that \mathfrak{a} is an ideal.
- (b) We shall show that $\mathfrak{b}^{ce} = \mathfrak{b}$. We already know from Exercise 1 that $\mathfrak{b}^{ce} \subset \mathfrak{b}$. Let $z = f(x)f(y)^{-1} \in \mathfrak{b}$, with $x \in A$ and $b \in S$. Then clearly $f(x) = f(y)(f(x)f(y)^{-1}) \in \mathfrak{b}$ since \mathfrak{b} is an ideal, thus $x \in \mathfrak{b}^c$ and so $z \in \mathfrak{b}^c[S^{-1}] = \mathfrak{b}^{ce}$ by the previous point.

In particular, if $\mathfrak{b}_1^c = \mathfrak{b}_2^c$, then $\mathfrak{b}_1 = \mathfrak{b}_1^{ce} = \mathfrak{b}_2^{ce} = \mathfrak{b}_2$.

- (c) We can assume that \mathfrak{a} is a proper ideal of A. Equality $\mathfrak{a}^e = A[S^{-1}]$ holds if and only if every element of $A[S^{-1}]$ can be written as as^{-1} for some $a \in \mathfrak{a}$, $s \in S$. If $\mathfrak{a} \cap S = \emptyset$ then no element $s \in S$ can be put into a form as'^{-1} for some $a \in \mathfrak{a}$ and $s' \in S$, as it can be readily checked. On the other hand, if $a_0 \in \mathfrak{a} \cap S$ then $xs^{-1} = (a_0x)(a_0s)^{-1} \in \mathfrak{a}[S^{-1}]$ for any $x \in A$, $s \in S$.
- (d) We want to show that the contraction map $\mathfrak{p} \mapsto \mathfrak{p}^c$ is an inverse of the given map when restricted to the set of prime ideals of $A[S^{-1}]$. Take a prime ideal \mathfrak{p} in $A[S^{-1}]$. Then the contraction \mathfrak{p}^c is a prime ideal in A by Exercise 1. Since $\mathfrak{p}^{ce} = \mathfrak{p}$ is a proper ideal, by the previous point we have that $\mathfrak{p}^c \cap S = \emptyset$.

It only remains to show that, for any prime ideal $\mathfrak{p} \subset A$ with $\mathfrak{p} \cap S = \emptyset$, \mathfrak{p}^e is a prime ideal in $A[S^{-1}]$ and $\mathfrak{p}^{ec} = \mathfrak{p}$. First, \mathfrak{p}^e is a proper ideal by the previous point. Next, assume $(xs^{-1})(ys'^{-1}) \in \mathfrak{p}[S^{-1}]$; this means that there exist $a \in \mathfrak{p}, s'', s''' \in S$ such that $s''s'''xy = ass' \in \mathfrak{p}$. Since $s''s''' \notin \mathfrak{p}$ and \mathfrak{p} is prime, we deduce that $xy \in \mathfrak{p}$, which in turn implies that either $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. Hence, either $xs^{-1} \in \mathfrak{p}[S^{-1}]$ or $ys'^{-1} \in \mathfrak{p}[S^{-1}]$. We have thus shown that $\mathfrak{p}[S^{-1}]$ is prime.

Let us now show that $\mathfrak{p}^{ec} \subset \mathfrak{p}$ for all prime ideal $\mathfrak{p} \subset A$ with $\mathfrak{p} \cap S = \emptyset$. Let $a \in \mathfrak{p}^{ec}$, hence $f(a) \in \mathfrak{p}[S^{-1}]$. By definition of the equivalence relation defining $A[S^{-1}]$, we deduce that there exist $a' \in \mathfrak{p}$ and $s, s' \in S$ such that s'(as - a') = 0, or equivalently $ss'a = a' \in \mathfrak{p}$. Since $ss' \notin \mathfrak{p}$ and \mathfrak{p} is prime, this forces $a \in \mathfrak{p}$, which is what we wanted.

Finally, the last assertion concerning the nilradical should be clear given what we have shown so far and the fact that the nilradical of a ring is the intersection of all its prime ideals.

- (e) It is immediate from the previous point.
- 3. Let A be a commutative ring. Prove that the following two assertions are equivalent:
 - (a) A is a noetherian ring.
 - (b) A satisfies the ascending chain condition on ideals, i.e. for all ascending sequence $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots \subset \mathfrak{a}_n \subset \cdots$ of ideals of A, there exists an integer $m \ge 1$ such that $\mathfrak{a}_m = \mathfrak{a}_{m+j}$ for all integer $j \ge 0$.

Use this characterization of noetherian rings and Exercise 2(b) (of the current sheet) to show that if A is noetherian, then so is $A[S^{-1}]$ for any multiplicative subset $S \subset A$.

Solution. $(a) \Rightarrow (b)$. Assume A is noetherian, and let $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$ an ascending sequence of ideals. Consider \mathfrak{a} to be the union of all ideals \mathfrak{a}_n , $n \ge 1$. Then \mathfrak{a} is an ideal of A, being an increasing union of ideals, hence it is finitely generated. Assume $\mathfrak{a} = \langle x_1, \ldots, x_n \rangle$ (notation for the ideal generated by x_1, \ldots, x_n). Then, for all $1 \le i \le n$, there exists $j_i \ge 1$ such that $x_i \in \mathfrak{a}_{j_i}$. Hence $\{x_1, \ldots, x_n\} \subset \mathfrak{a}_m$, where $m = \max_{1 \le i \le n} j_i$. In particular, we deduce that $\mathfrak{a} \subset \mathfrak{a}_m$, whence $\mathfrak{a} = \mathfrak{a}_m = \mathfrak{a}_{m+j}$ for all integer $j \ge 0$.

 $(b) \Rightarrow (a)$. Assume that A satisfies the ascending chain condition on ideals. Let $\mathfrak{a} \subset A$ be an ideal; we want to show that it has to be finitely generated. Assume for the purpose of a contradiction that it is not. Let $x_1 \in \mathfrak{a}$. Then, there exists $x_2 \in \mathfrak{a} \setminus \langle x_1 \rangle$ (because \mathfrak{a} cannot be generated by x_1). Again, we may pick $x_3 \in \mathfrak{a} \setminus \langle x_1, x_2 \rangle$. Proceeding like this, we are able to construct a sequence $(x_n)_{n \ge 1}$ of elements in A such that $x_{n+1} \notin \langle x_1, \ldots, x_n \rangle$. Define $\mathfrak{a}_n = \langle x_1, \ldots, x_n \rangle$ for all $n \ge 1$. In this way we obtain an ascending sequence of ideals; therefore there

exists $m \ge 1$ such that $\mathfrak{a}_m = \mathfrak{a}_{m+j}$ for all $j \ge 0$. This means that $x_{m+j} \in \mathfrak{a}_m$ for all $j \ge 1$, leading to a contradiction.

Now assume that A is noetherian, and let $S \subset A$ a multiplicatively closed subset of A. On order to prove that $A[S^{-1}]$ is noetherian, we shall make use of the previous characterization and prove that every ascending chain of ideals is eventually constant.

We argue by contradiction: assume that there exists $\mathfrak{b}_1 \subset \mathfrak{b}_2 \subset \cdots$, an ascending sequence of ideals in $A[S^{-1}]$ in which every inclusion $\mathfrak{b}_n \subsetneq \mathfrak{b}_{n+1}$ is strict. By Exercise 2(b) of the current sheet, the ascending sequence of ideals $\mathfrak{b}_1^c \subset \mathfrak{b}_2^c \subset \cdots$ in A has the property that each inclusion is strict. However, this contradicts the assumption that A in noetherian.

4. Let R = A[X] be the ring of polynomials in one variable over the commutative ring A. Consider the multiplicative subset $S = \{1, X, X^2, \ldots, X^m, \ldots\}$. The ring of fractions $R[S^{-1}]$ is called the *ring of Laurent polynomials* over A.

Let $A^{(\mathbb{Z})} = \{f : \mathbb{Z} \to A : f(n) = 0 \text{ for all but a finite number of } n\}$, which is a commutative ring when endowed with pointwise addition of functions and multiplication given by

$$(f \cdot g)(n) = \sum_{i+j=n} f(i)g(j)$$
 for all $n \in \mathbb{Z}$, for all $f, g \in A^{(\mathbb{Z})}$.

Prove that $R[S^{-1}]$ and $A^{(\mathbb{Z})}$ are isomorphic as rings.

Solution. There is a canonical ring homomorphism $\varphi \colon R \to A^{(\mathbb{Z})}$, defined as follows: for any $f = \sum_{i=0}^{n} a_i X^i \in R$, set $(\varphi(f))(i) = a_i$ for all $0 \leq i \leq n$, $(\varphi(f))(i) = 0$ otherwise. Now $\varphi(S) \subset (A^{(\mathbb{Z})})^{\times}$, i.e. $\varphi(f)$ is invertible in $A^{(\mathbb{Z})}$ for all $f \in S$. Indeed, this is clearly true for m = 0. Let $m \in \mathbb{N}_{>0}$, and define the function $g_m \in A^{(\mathbb{Z})}$ by setting $g_m(n) = 1$ if n = -m, $g_m(n) = 0$ otherwise. Then it can be easily checked that $\varphi(X^m) \cdot g_m = 1$ in $A^{\mathbb{Z}}$, so that g_m is the inverse of $\varphi(X^m)$.

By the universal property of the ring of fractions, there exists a ring homomorphism $\overline{\varphi} \colon R[S^{-1}] \to A^{(\mathbb{Z})}$ such that, if $i \colon R \to R[S^{-1}]$ denotes the canonical map, $\overline{\varphi} \circ i = \varphi$. We claim that $\overline{\varphi}$ gives the desired ring isomorphism.

We first show that $\overline{\varphi}$ is injective: for this, assume $\overline{\varphi}(f/X^m) = 0$ for some $f \in \mathbb{R}$, $m \in \mathbb{N}$. Now by definition of the map $\overline{\varphi}$ we have

$$0 = \overline{\varphi}(f/X^m) = \varphi(f)(\varphi(X^m))^{-1} = \varphi(f)g_m \,.$$

Expliciting pointwise the equality $0 = \varphi(f)g_m$, one readily obtains that $\varphi(f) = 0$. Since φ is clearly injective, we deduce that f = 0. Therefore $\overline{\varphi}$ is injective.

To prove that $\overline{\varphi}$ is surjective, we construct a right inverse for it, i.e. a map $\psi \colon A^{(\mathbb{Z})} \to R[S^{-1}]$ such that $\overline{\varphi} \circ \psi = \mathrm{id}_{A^{(\mathbb{Z})}}$. For all $f \colon \mathbb{Z} \to A$ with finite support,

define

$$\psi(f) = \sum_{n \ge 0} f(n)X^n + \sum_{n \ge 1} f(-n)(X^n)^{-1} ,$$

where both are sums with a finite number of terms since f has finite support. It is straightforward to verify that $\overline{\varphi}(\psi(f)) = f$ for all function $f \in A^{(\mathbb{Z})}$.

5. Let A be a commutative ring, and assume that for any prime ideal $\mathfrak{p} \subset A$ the localization $A_{\mathfrak{p}}$ at \mathfrak{p} is an integral domain. Is it true then that A is an integral domain?

Solution. A need not be an integral domain. As a counterexample, take $A = \mathbb{Z}/6\mathbb{Z}$, which has only two non-trivial ideals, namely $\mathfrak{p}_1 = 2\mathbb{Z}/6\mathbb{Z}$ and $\mathfrak{p}_2 = 3\mathbb{Z}/6\mathbb{Z}$. Being evidently maximal, they are both prime ideals.

It is clear that A is not an integral domain, since for example $\overline{2}, \overline{3} \neq 0$ but $\overline{2} \cdot \overline{3} = \overline{6} = 0$. However, both $A_{\mathfrak{p}_1}$ and $A_{\mathfrak{p}_2}$ are integral domains. We shall prove it only for $A_{\mathfrak{p}_1}$, since the other case is perfectly similar.

Actually, we claim that $A_{\mathfrak{p}_1}$ is a field (hence, in particular, an integral domain). Recall that $A_{\mathfrak{p}_1}$ is a local ring with unique maximal ideal $\mathfrak{p}_{\mathfrak{l}_{\mathfrak{p}_1}} = \{xy^{-1} : x \in \mathfrak{p}_1, y \notin \mathfrak{p}_1\}$ (for example, as an immediate consequence of Proposition 1.6 *i*) of [1]). Now, in our case, there exists an element $x \in A \setminus \mathfrak{p}_1$ such that

$$x \in \operatorname{Ann}(\mathfrak{p}_1) = \{ y \in A : ya = 0 \text{ for all } a \in \mathfrak{p}_1 \}$$

(for example $x = \overline{3}$). This, by the definition of the equivalence relation between fractions in $A_{\mathfrak{p}_1}$, implies that the unique maximal ideal $\mathfrak{p}_{1\mathfrak{p}_1}$ is actually the zero ideal. To conclude, simply notice that any local ring for which the unique maximal ideal is the 0 ideal has to be a field.

- 6. Let A be a commutative ring. Denote by S_0 the set of all non-zero divisors of A.
 - (a) Show that S_0 is a multiplicative subset of A. (The ring $A[S_0^{-1}]$ is called the *total ring of fractions* of A).
 - (b) Prove that S_0 is the largest multiplicative subset S of A such that the canonical map $A \to A[S^{-1}]$ is injective.
 - (c) Show that, in the ring $A[S_0^{-1}]$, each element is either invertible or a zero-divisor.

Solution.

(a) Let $a, b \in S_0$. We want to show that ab is not a zero divisor in A. By contradiction, assume that there exists $c \neq 0$ in A such that (ab)c = 0. Then $bc \neq 0$ since b is not a zero-divisor and a(bc) = 0, contradicting the fact

that a is not a zero-divisor. Moreover, the identity $1 \in A$ is clearly not a zero-divisor. Therefore S_0 is a multiplicative subset of A.

- (b) It is equivalent to prove that, given a multiplicative system $S \subset A$, the canonical ring map $\varphi \colon A \to A[S^{-1}]$ is injective if and only if $S \subset S_0$. Indeed, let $x \in A$ be such that $\varphi(x) = 0$. Then, by definition of the equivalence relation defining $A[S^{-1}]$, there exists $y \in S$ such that $0 = y(x \cdot 1 1 \cdot 0) = yx$. Now this implies x = 0 if and only if $y \in S_0$, which proves the claim.
- (c) An arbitrary element of $A[S_0^{-1}]$ is of the form xy^{-1} , with $x \in A$ and $y \in S_0$. There are two cases:
 - $x \in S_0$: in this case, $yx^{-1} \in A[S_0]^{-1}$ is clearly an inverse for xy^{-1} .
 - $x \notin S_0$: this implies that there exists $x' \in A \setminus \{0\}$ such that xx' = 0. The latter equality holds in $A[S_0]^{-1}$ as well (where we identify as usual x with the fraction x/1), and $x' \neq 0$ in $A[S_0]^{-1}$ since the canonical map $\varphi \colon A \to A[S_0^{-1}]$ is injective by the previous point. Hence $xy^{-1} \cdot x' = 0$, thus xy^{-1} is a zero-divisor in $A[S_0^{-1}]$.

References

[1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.