
D-MATH Commutative Algebra HS 2018

Prof. Paul Nelson

Solutions Sheet 3
Spectrum of a ring, modules and primary decomposition

Let R be a commutative ring, k an algebraically closed field.

1. The spectrum of a commutative ring R is defined as the set

Spec(R) = {P ⇢ R : P is a prime ideal}

The purpose of this exercise is to show that Spec(R) can be equipped with a

topology, called the Zariski topology, making it into a compact topological space.

Define a subset X ⇢ Spec(R) to be closed if it is empty or else if there exists an

ideal a ⇢ R such that

X = {p 2 Spec(R) : a ⇢ p} .

(a) Prove that, if X1, X2 ⇢ Spec(R) are closed, then so is X1 [X2.

(b) Prove that, if (Xi)i is a collection of closed subsets of Spec(R), then so isT
i2I Xi.

(c) Deduce, from the previous two points, that the complements in Spec(R) of

closed subsets are the open sets for a topology on Spec(R).

(d) Let (Xi)i2I be a collection of closed subsets of Spec(R) with the finite inter-

section property, namely such that
T

j2J Xj 6= ? for any finite subset J ⇢ I.
Show that this implies

T
i2I Xi 6= ?.

Deduce that Spec(R), with the topology defined in (c), is a compact topo-

logical space.

(e) Which condition should an ideal p ⇢ R satisfy for the singleton

{p} ⇢ Spec(R) to be closed?

(f) Show that Spec(R) is a T0-space, i.e. for any two distinct points p1, p2 2
Spec(R) either there exists a neighborhood of p1 not containing p2 or there

exists a neighborhood of p2 not containing p1.

(g) Is Spec(R) always a Hausdor↵ topological space?

Solution.

(a) For simplicity let us denote, for any ideal a ⇢ R, V (a) = {p 2 Spec(R) : a ⇢
p}, so that a set X ⇢ Spec(R) is closed according to our definition if there

exists an ideal a ⇢ R such that X = V (a).
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Let nowX1, X2 be closed subsets of Spec(R), so that there exist ideals a1, a2 ⇢
R such that X1 = V (a1) and X2 = V (a2). We claim that X1[X2 = V (a1a2),
so that in particular X1 [X2 is closed in Spec(R).

Assume first that p 2 V (a1a2), so that a1a2 ⇢ p. Since p is prime, this implies

that either a1 ⇢ p or a2 ⇢ p (see Exercise 2, Sheet 1). Hence, either p 2 X1

or p 2 X2, or equivalently p 2 X1 [X2.

Conversely, let p 2 X1 (the case p 2 X2 is similar). Then a1 ⇢ p, hence
a1a2 ⇢ a1 ⇢ p, giving p 2 V (a1a2).

(b) Let (Xi)i2I be closed subsets of Spec(R), so thatXi = V (ai) for ideals ai ⇢ R.

We claim that
T

i2I Xi = V (
P

i2I ai), so that again
T

i2I Xi is closed in the

spectrum of R.

If p 2 Xi for all i 2 I, then by definition p � ai for all i 2 I. Since by

definition
P

i2I ai is the smallest ideal containing all the ai, i 2 I, we deduce

that p �
P

i2I ai, whence p 2 V (
P

i2I ai).

The converse inclusion is immediate since
P

i2I ai � aj for all j 2 I.

(c) It is clear from the previous two points that the set of all complements of

closed sets is closed under arbitrary unions and finite intersection, which is a

su�cient condition for it to be a topology on the set Spec(R).

(d) Assume that (Xi)i2I is a collection of closed subsets of the spectrum satisfying

the finite intersection property. Assume Xi = V (ai) for ideals ai ⇢ R. The

fact that
T

i2J Xi = V (
P

i2J ai) 6= ? for a finite subset J ⇢ I implies that

(and it is actually equivalent to)
P

i2J ai is a proper ideal of R (because any

proper ideal is contained in a prime ideal). Since this holds for any finite

subset J ⇢ I, it implies that the sum
P

i2I ai is a proper ideal (simply use

the fact that an ideal is proper if and only if it doesn’t contain 1). Hence

V (
P

i2I ai) =
T

i2I Vi 6= ?.

This clearly implies that Spec(R) is a compact topological space, because

the condition expressed before on closed sets is equivalent, by taking comple-

ments, to the fact that every open cover admits a finite subcover.

(e) A singleton {p} is closed, by definition, if and only if there exists an ideal

a ⇢ R such that p is the only ideal containing a. This clearly can happen if

and only if p coincides with every maximal ideal that contains it, which is to

say if and only if p is a maximal ideal itself.

(f) Assume that p1 6= p2 are distinct prime ideals of R. It su�ces to show that

either there exists a closed subset of Spec(R) which contains p1 but not p2
or a closed subset that contains p2 but not p1. This amounts to prove that

either we can find an ideal a ⇢ R contained in p1 but not in p2 or an ideal

b ⇢ R contained in p2 but not in p1. Since p1 6= p2, we may assume without

loss of generality that there exists an element a 2 p1rp2. Then the principal

ideal hai generated by a is contained in p1 but not in p2, which is what we

wanted.
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(g) In general Spec(R) is not an Hausdor↵ space for the Zariski topology. For

example, consider R = k[X1, . . . , Xn], where n > 2 and k is an algebraically

closed field. Since there are clearly irreducible varieties in kn
which are not

points, we may infer that there are prime ideals in R that are not maximal,

which in turn means that there are points in the spectrum which, as single-

tons, are not closed. Hence the space cannot be Hausdor↵ (actually it is not

even T1 for the very same reason).

2. Let A,B be two commutative rings, ' : A ! B a ring homomorphism. For any

ideal b ⇢ B, denote the ideal '�1
(b) by '⇤

(b).

(a) Show that the assignment Spec(B) 3 p 7! '⇤
(p) gives a well-defined map

'⇤
: Spec(B) ! Spec(A).

(b) Prove that '⇤
is continuous, where both Spec(A) and Spec(B) are equipped

with the Zariski topology.

(c) Let  : B ! C be a ring homomorphism. Show that ( � ')⇤ = '⇤ �  ⇤
.

(Hence, in the language of categories, the assignment R 7! Spec(R) defines a

contravariant functor from the category of commutative rings to the category

of topological spaces).

(d) Assume that ' is surjective. Prove that '⇤
is an homeomorphism of Spec(B)

onto the closed subset X0 = {p 2 Spec(A) : ker' ⇢ p} of Spec(A).

(e) Deduce from the previous point that, for an arbitrary commutative ring A,
Spec(A) and Spec(A/nil(A)) are naturally homeomorphic, where nil(A) de-
notes the nilradical ideal of A.

(f) Assume that ' is injective. Prove that '⇤
(Spec(B)) is dense in Spec(A).

More precisely, show that '⇤
(Spec(B)) is dense in Spec(A) if and only if

ker' ⇢ nil(A).

Solution.

(a) The map '⇤
is well defined since, as we proved in the second exercise sheet

(Exercise 1) '�1
(b) is a prime ideal of A whenever b is a prime ideal of B.

(b) It is su�cient to show that the preimage of each closed set of Spec(A) is

closed in Spec(B). Let X ⇢ Spec(A) be closed, so that there exists an ideal

a ⇢ A such that X = V (a). Then

('⇤
)
�1
(X) = {p ⇢ B prime ideal : a ⇢ '�1

(p)} = {p ⇢ B prime ideal : '(a)e ⇢ p} ,

in other words, ('⇤
)
�1
(X) = V ('(a)e), which by definition is closed in

Spec(B).

(c) It immediately stems from the fact that ( � ')�1
(p) = '�1

( �1
(p)) for any

ideal p ⇢ C.
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(d) Suppose ' is surjective. In order to prove that '⇤
: Spec(B) ! X0 is an

homeomorphism, it is su�cient to check that:

• '⇤
(p) is an element of X0 for all p 2 Spec(B);

• '⇤
: Spec(B) ! X0 is bijective;

• '⇤
is an closed map, i.e. it takes closed subsets of the domain onto closed

subsets of the image.

In particular, the last point will also imply that X0 is closed.

Let p be a prime ideal in B; then, since obviously 0 2 p, we get '⇤
(p) =

'�1
(p) � '�1

({0}) = ker', hence '⇤
(p) 2 X0.

Assume p1, p2 2 Spec(B) are such that '�1
(p1) = '�1

(p2). Surjectivity of

' implies that p1 = '('�1
(p1)) = '('�1

(p2)) = p2. Thus '⇤
is injective.

Furthermore, given a prime ideal p � ker', then surjecitvity of ' implies

that '(p) is a prime ideal in B. Moreover, since p contains the kernel, it

holds that '�1
('(p)) = p, which means that p is the image under the map

'⇤
of the prime ideal '(p) ⇢ B. We thus proved that '⇤

is surjective when

it codomain is restricted to X0.

Finally, assume that X ⇢ Spec(B) is closed, hence there is an ideal b ⇢ B
such that X = V (b). Then

'⇤
(X) = {'�1

(p) ⇢ A : p � b, p prime ideal of B} = {p0 ⇢ A prime ideal : p0 � '�1
(b)}

where the second equality follows again from the fact that ' is surjective.

Hence '⇤
(X) = V ('�1

(b)) is closed in Spec(A).

(e) There is a canonical projection map ⇡ : A ! A/nil(A), which induces a map

⇡⇤
: Spec(A/nil(A)) ! Spec(A). Clearly ⇡ is surjective, hence by the previous

point we deduce that ⇡⇤
is an homeomorphism of Spec(A/nil(A)) onto the

set

{p 2 Spec(A) : ker ⇡ = nil(A) ⇢ p} . (1)

Clearly, any prime ideal contains the nilradical ideal by definition of the latter,

therefore the set in (1) is simply Spec(A). This achieves the proof.

(f) We are going to prove directly the second assertion, which implies as a par-

ticular case the first one. By the previous point, we may assume without loss

of generality that nil(B) = {0} (if not, replace B with B/nil(B)).

The set '⇤
(Spec(B)) is dense in Spec(A) if and only if, for any proper ideal

a ⇢ A not contained in nil(A), there exists a prime ideal p ⇢ B such that

'⇤
(p) = '�1

(p) does not contain a (a set is dense in a topological space if

and only if it intersects non-trivially any non-empty open set). Assume that

ker' ⇢ nil(A), and fix a non-trivial, proper ideal a ⇢ A. It su�ces to show

that there exists a prime ideal p ⇢ B such that '(a) * p. Assume, for the

sake of contradiction, that '(a) is contained in any prime ideal of B, which
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means that '(a) ⇢ nil(B) = {0}. Hence a ⇢ ker' ⇢ nil(A), contradicting
our assumption on a.

Conversely, assume that '⇤
(Spec(B)) is dense in Spec(A). Let x 2 ker',

and denote by a = hxi, the principal ideal generated by x. Then it is clear

that '⇤
(p) � a for any p 2 Spec(B), which means that '⇤

(Spec(B)) ⇢ V (a),
where the latter is a closed subset of the spectrum of A. Therefore,

Spec(A) = '⇤(Spec(B)) ⇢ V (a) ⇢ Spec(A) ,

hence equality holds everywhere. To conclude, simply notice that V (a) =

Spec(A) necessarily implies a ⇢ nil(A), which in turn gives x 2 nil(A).

3. In this exercise we examine a connection between the Zariski topology on the spec-

trum of a ring and the Zariski topology on the a�ne space kn
(k algebraically closed

field). Let X ⇢ kn
be a variety, and denote by I(X) the ideal of k[X1, . . . , Xn]

defined by it. The quotient ring

P (X) = k[X1, . . . , Xn]/I

is called the (a�ne) coordinate ring of X.

(a) Define P̃ (X) to be the ring of polynomial functions on X, namely

P̃ (X) = {' : X ! k : 9 f 2 k[X1, . . . , Xn] s.t. '(x) = f(x) 8 x 2 X} ,

with the obvious addition and multiplication operations. Show that P (X)

and P̃ (X) are isomorphic rings.

(b) For each x 2 X, denote by mx the ideal of all f 2 P (X) such that f(x) = 0.

Show that it is a maximal ideal in P (X).

Hint: in the one-to-one correspondence between a�ne varieties in kn
and

radical ideals of k[X1, . . . , Xn], prove that, for any variety X ⇢ kn
, I(X) is

a maximal ideal whenever X = {P} is a singleton.

(c) Given an arbitrary commutative ring R, we define

Max(R) = {p 2 Spec(R) : p is a maximal ideal} ;

Max(R) is called the maximal spectrum of R.

In the previous point, we have thus defined a map µ : X ! Max(P (X)).

Prove that µ is injective.

(d) Using the weak form of the Hilbert Nullstellensatz, prove that the map µ is

surjective.

(e) Suppose now that X = kn
, so that P (X) ' k[X1, . . . , Xn]. Show that the

map µ is continuous with respect to the Zariski topologies on kn
and on

Max(k[X1, . . . , Xn]). Is µ an homeomorphism onto its image?

5



Solution.

(a) We define a map � : P (X) ! P̃ (X), by sending each equivalence class [f ] of
a polynomial f 2 k[X1, . . . , Xn] to the polynomial function on X defined by

f . The map is well defined, since if [f ] = [g] for some f, g 2 k[X1, . . . , Xn],

then f � g 2 I(X), whence (f � g)/(x) = 0 for all x 2 X. Thus f(x) = g(x)
for all x 2 X.

The map � is clearly a ring homomorphism. By definition of the ring P̃ (X), �

is surjective. It only remains to prove that it is injective. Assume �([f ]) = 0

for some f 2 k[X1, . . . , Xn]. Then f(x) = 0 for all x 2 X, which implies

f 2 I(X), or equivalently [f ] = 0.

(b) It su�ces to show that the ideal I({x}) is maximal in k[X1, . . . , Xn]. This

follows from the fact that {x} is a minimal variety (in the sense of inclusion)

in kn
and the correspondence X 7! I(X) is an anti-isomorphism of partially

ordered sets.

(c) Assume that x1, x2 2 X are such that mx1 = mx2 . Then it is immediate to

deduce that I({x1}) = I({x2}), hence x1 = Z(I({x1})) = Z(I({x2})) = x2.

Therefore the map µ is injective.

(d) Let m be a maximal ideal in P (X), and denote by m0 ⇢ k[X1, . . . , Xn] its

inverse image under the projection map k[X1, . . . , Xn] ! P (X). Then m0
is

a maximal ideal in k[X1, . . . , Xn], in particular it is a proper ideal. By the

weak form of Hilbert Nullstellensatz, the zero locus Z(m0
) is non-empty. Let

x 2 Z(m0
). Since m0 � I(X), we deduce that {x} ⇢ Z(m0

) ⇢ Z(I(X)) = X,

hence x 2 X. It is now trivial to check that µ(x) = m for such a choice of x.

(e) Let C ⇢ Max(k[X1, . . . , Xn]) be a closed set (for the induced Zariski topology

on the maximal spectrum). Then there exists an ideal I ⇢ k[X1, . . . , Xn] such

that C = {m maximal ideal : I ⇢ m}. We claim that µ�1
(C) = Z(I), so that

in particular µ�1
(C) is closed in kn

for the Zariski topology and the map µ
is continuous.

Assume that x 2 Z(I), then µ(x) = I({x}) � I(Z(I)) � I, hence µ(x) 2 C.

Conversely, assume µ(x) 2 C, i.e. µ(x) � I. By definition of the map µ, this
means that, for all f 2 I, f(x) = 0; thus x 2 Z(I).

The map µ is actually an homeomorphism. It su�ces to show that the

image of each closed set is closed. Let Z(I) be a closed set in kn
, where

I ⇢ k[X1, . . . , Xn] is an ideal. Then we claim that

µ(Z(I)) = {m ⇢ k[X1, . . . , Xn] maximal ideal : m � I} ,

so that it is indeed closed in Max(k[X1, . . . , Xn]) for the Zariski topology. If

x 2 Z(I), then µ(x) = I(x) � I(Z(I)) � I. Conversely, if m is a maximal

ideal containing I, then {x} = Z(m) ⇢ Z(I), so that x 2 Z(I) and µ(x) = m.
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4. Let (Mi)i2I be a collection of modules over the commutative ring R. Denote byL
i2I Mi their direct sum, and by

Q
i2I Mi their product. For any j 2 I, denote

by ⇡j :
Q

i2I Mi ! Mj the canonical (linear) projection onto the j-th factor, and

by ⌘j : Mj !
L

i2I Mi the injective linear map defined by

(⌘j(x))i =

(
x if i = j ;

0 if i 6= j .

(a) Prove the universal property of the product : for any R-module N and any

collection ('i)i2I of linear maps 'i : N ! Mi, there exists a unique linear

map ' : N !
Q
i2I

Mi such that ⇡j � ' = 'j for all j 2 I.

(b) Prove the universal property of the direct sum: for any R-module P and any

collection ( i)i2I of linear maps  i : Mi ! P , there exists a unique linear

map  :
L

i2I Mi ! P such that  � ⌘j =  j for all j 2 I.

(c) Let (Nj)j2J be another collection of R-modules. Use the previous two points

to prove that there exists a canonical linear isomorphism

Hom

✓M

i2I

Mi,
Y

j2J

Nj

◆
!

Y

(i,j)2I⇥J

Hom(Mi, Nj) .

Solution. This exercise has been solved in the lecture.

5. In this exercise we discuss the notion of direct limits of modules.

Let (I,6) be a directed set, i.e. a partially ordered set with the property that for

all ↵, � 2 I there exists � 2 I with ↵ 6 � and � 6 �. Let (Mi)i2I be a collection

of R-modules, and assume that we are given, for each i 6 j 2 I, an R-module

morphism µij : Mi ! Mj such that:

• µii : Mi ! Mi is the identity map for all i 2 I;

• µik = µjk � µij for all i 6 j 6 k 2 I.

The modules (Mi)i2I together with the collection (µij)i6j2I form a so-called direct

system of modules.

Denote by C the direct sum of all modules Mi, i 2 I and identify each factor Mi

with its isomorphic image in C. Let D be the submodule of C generated by the

set {xi � µij(xi) : xi 2 Mi, i 6 j 2 I}. Let M = C/D, and let µ : C ! M be the

canonical projection map. Denote by µi the restriction of µ to Mi The module M
is called the direct limit of the direct system, and it is denoted by M = lim

�!
Mi.

(a) Prove that µi = µj � µij for all i 6 j 2 I.

(b) Show that every element of M can be written in the form µi(xi) for some

i 2 I and some xi 2 Mi.
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(c) Show that, if µi(xi) = 0 for some xi 2 Mi and some i 2 I, then there exists

j > i such that µij(xi) = 0.

(d) Prove the universal property of the direct limit : for any R-module N and

any collection ('i)i2I of R-linear maps 'i : Mi ! N such that 'i = 'j � µij

for all i 6 j 2 I, there exists a unique R-linear map ' : M ! N such that

'i = ' � µi for all i 2 I.

Solution.

(a) Let i 6 j 2 I and x 2 Mi; we want to show that µi(x) = µj(µij(x)). This is
clear since x and µij(x) are identified in M , since their di↵erence belongs to

D.

(b) Let [x] be an element of M , where x 2 C, so that x =
P

i2I xi for some

xi 2 Mi with xi = 0 for all but finitely many indices i 2 I. Let J = {i 2
I : xi 6= 0}; then since I is a directed set there exists j 2 I such that j > i
for all i 2 J . Thus, [x] = [

P
i2J µij(xi)], since x �

P
i2J µij(xi) 2 D. NowP

i2J µij(xi) 2 Mj, hence we get what we wanted.

(c) Assume that µi(xi) = [xi] = 0 for some xi 2 Mi, so that xi 2 D. We can thus

write xi =
P

k ↵k(xik � µikjk(xik)) for some ↵k 2 R, ik 6 jk 2 I. We may

assume that ↵k = 1 and that each pair (i, j) 2 I2 with i 6 j appears only

once in the previous expression, since the genrators xl � µlm(xl), l 6 m 2 I
are clearly closed under addition and multiplication by scalars. We may thus

write

xi =

X

l6m

xl � µlm(xl) =

X

l

X

l6m

xl � µlm(xl) .

Let A ⇢ I be the finite subset of indexes appearing in the sum of the right-

hand side of the previous equality. We may thus write

X

l

X

l6m

xl � µlm(xl) =

X

s2A

ys

for some ys 2 Ms. Equality xi =
P

a2A ys forces yi = xi and ys = 0 for

all s 6= i. Take j 2 I such that j > m for every m such that the couple

(l,m), l 6 m belongs to A2
for some l 2 A. Then

µij(xi) =

X

l

X

l6m

µlj(xl)� µmj(µlm(xl)) = 0

because of the equality µmj � µlm = µlj.

(d) By the universal property of the direct sum, there exists a linear map '̃ : C !
N such that '̃ � ⌘i = 'i for all i 2 I, where ⌘i : Mi ! C is the canonical

inclusion. The condition 'i = 'j � µij for all i 6 j 2 I precisely means that

D ⇢ ker '̃, hence '̃ factors through a map ' : M ! N such that ' � ⇡ = '̃,
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where ⇡ : C ! M is the canonical projection. It is immediate to check that,

with this definition, 'i = ' � µi for all i 2 I. We have thus shown existence.

To show uniqueness, we resort to point (b) of the current exercise. Every

element of M is of the form µi(xi) for some xi 2 Mi, hence ' must send this

element to 'i(xi) (because of the property 'i = ' � µi that ' has to satisfy).

The proof is concluded.
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