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Solutions Sheet 5

Flatness and primary decomposition

Let R be a commutative ring, k an algebraically closed field.

1. Let R be a ring, a ⊂ R an ideal, M an R-module. Denote by aM the submodule of
M generated by the elements λx, where λ ∈ a, x ∈M . Show that the R-modules
(R/a)⊗R M and M/aM are isomorphic.

(Hint: tensor the exact sequence 0→ a→ R→ R/a→ 0 with M .)

Solution. Given the exact sequence

a→ R→ R/a→ 0 ,

we know from the lecture the tensoring with M preserves the exactness property,
i.e.

a⊗R M → R⊗R M → (R/a)⊗R M → 0 .

We deduce that (R/a)⊗RM is isomorphic as an R-module to the quotient module
(R⊗RM)/(a⊗RM). The R-linear map ϕ : M → (R⊗RM)/(a⊗RM) sending m to
the equivalence class of 1⊗m is surjective, being the composition of two surjective
maps. Moreover, it is immediate to verify that kerϕ = aM , so that we get an
isomorphism (R ⊗R M)/(a ⊗R M) ' M/aM . Combining the two isomorphisms,
we get the desired result.

2. Let 0→ M
f→ N

g→ P → 0 be an exact sequence of R-modules. Assume that M
and P are finitely generated. Show that N is finitely generated.

Solution. Let S ⊂M and T ⊂ P be finite generating sets of M and P respectively.
Let T ′ ⊂ N be a finite set such that g(T ′) = T . We claim that N is generated by
the set f(S)∪T ′ (so that, in particular, it is finitely generated). Denote by N ′ ⊂ N
the submodule of N generated by f(S)∪T ′. Then N ′ contains f(M) = ker g, since
S generates M . Moreover, g(N ′) is a submodule of P containing g(T ′) = T ; T
being a generating set for P , this implies that g(N ′) = P .

Thus, given an arbitrary x ∈ N , there exists y ∈ N ′ such that g(x) = g(y) (since
g(N ′) = P ); hence x− y ∈ ker g ⊂ N ′. We conclude that x = (x− y) + y ∈ N ′, as
N ′ is a submodule. We have thus established that N ′ = N , which was our claim.

3. Let R, S be two rings, M an R-module, P an S-module, N an (R, S)-bimodule,
namely N is simultaneously an R-module and an S-module and the two module
structures are compatible, i.e. (rx)s = r(xs) for all r ∈ R, s ∈ S, x ∈ N .
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(a) Show that M ⊗R N has a canonical S-module structure, and that N ⊗S P
has a canonical R-module structure.

(b) Prove that, with the structures defined in the previous point, there is an
isomorphism of abelian groups

(M ⊗R N)⊗S P 'M ⊗R (N ⊗S P ) .

(c) Use the previous point to show that, if f : R → S is a ring morphism and
M is a flat R-module, then the extended module MS = S ⊗R M is a flat
S-module.

Solution.

(a) The only reasonable way to define a scalar multiplication on M ⊗R N by
elements of S is by defining s · (f ⊗ g) = f ⊗ gs for all s ∈ S, f ∈ M and
g ∈ N , and then extending it by linearity on all elements of M ⊗R N . the
fact that the two module structures on N are compatible implies that all the
axioms of an S-module are satisfied for this scalar multiplication on M⊗RN .
The same applies mutatis mutandis to N ⊗S P .

(b) Fix an element p0 ∈ P , and define the map fp0 : M ×N → M ⊗R (N ⊗S P )
by fp0(m,n) = m ⊗ (n ⊗ p0). This map is clearly R-bilinear, hence by the
universal property of the tensor product it factors through an R-linear map
f̃p0 : M⊗RN →M⊗R (N⊗SP ), which thus has the property that f̃p0m⊗n =
m ⊗ (n ⊗ p0). Now define a map f : (M ⊗R N) × P → M ⊗R (N ⊗S P ) by
setting f(a, p) = f̃p(a) for all a ∈ M ⊗R N and all p ∈ P . The map f is
bilinear over the ring S, where M ⊗R (N ⊗S P ) can be endowed with the
structure of an S-module as in the previous map since it is easy to check that
N ⊗S P is an (R, S)-bimodule with the obvious scalar operations. Therefore,
we have an induced S-linear map (again, applying the universal property of
the tensor product) f̃ : (M ⊗N)⊗S P →M ⊗R (N ⊗S P ) sending (m⊗n)⊗p
to m⊗ (n⊗ p) for all m ∈M,n ∈ N and p ∈ P . It is not hard to check that
the map f̃ is also R-linear.

Applying the very same reasoning as above, but this time starting from
M ⊗R (N ⊗S P ) and constructing a map with values in (M ⊗R N)⊗S P , we
get an (R, S)-linear map g̃ : M ⊗R (N ⊗S P ) → (M ⊗R N) ⊗S P with the
property that the composed maps g̃ ◦ f̃ and f̃ ◦ g̃ are the identity map on a
set of generators of the respective domains. By linearity, they coincide with
the identity map everywhere, so that g̃ and f̃ are inverses of each other. We
have thus shown that (M ⊗R N) ⊗S P and M ⊗R (N ⊗S P ) are isomorphic
not only as abelian groups, but also as (R, S)-bimodules.

(c) It is immediate using the isomorphism of the previous point and the fact
that S is flat as an S-module: given any exact sequence of S-modules, first
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tensorize it over S with S, so that you get again an exact sequence of S-
modules, then tensorize the latter over R with M and use the isomorphism
of the previous point to get again an exact sequence.

4. (a) Assume that M,N are flat R-modules. Show that M⊗RN is a flat R-module.

(b) If S is a flat R-algebra and N is a flat S-module, then N is flat as an R-
module.

Solution.

(a) It is an immediate consequence of the associativity of the tensor product.

(b) Given an exact sequence of R-modules, first tensorize it over R with the flat
R-algebra S, so as to obtain again an exact sequence of R-modules. Clearly,
the latter is also an exact sequence of S-modules, hence we may tensorize
it over S with the flat S-module N to obtain again an exact sequence of S-
modules. Use the associativity of the tensor product as stated in the previous
exercise and the fact that S ⊗S E ' E for any S-module E to get the result.

5. Let M,N be finitely generated modules over noetherian ring R. The aim here is
to prove that

Ass(HomR(M,N)) = Supp(M) ∩ Ass(N) , (1)

where Supp(M) is the set of all primes of R containing the annihilator of M .

(a) Show that it is sufficient to assume that R is a local ring, i.e. it contains a
unique maximal ideal.

(b) Prove that, if M is a non-zero finitely generated module over a noetherian
local ring R with maximal ideal p, then HomR(M,R/p) is non-zero.

(You may use Nakayama’s lemma, without proving it: let p be the maximal
ideal of a noetherian local ring R, and let M be a finitely generated R-module.
If pM = M , then M = 0.

Recall also that M/pM has a vector space structure over the field R/p.)

(c) Conclude.

Solution.

(a) Since associated primes behave well under localization (theorem 3.1 c) of [1]),
it is sufficent to prove (localizing at prime ideals) that, if R is a local ring
with maximal ideal p, then p is in Ass(HomR(M,N)) if and only if it is in
Supp(M) ∩ Ass(N).

(b) Using Nakayama’s lemma, we deduce that pM is a proper submodule of
M , since M is non-zero. By the result proven in Exercise 1 of the current
sheet, we have that the non-zero quotient module M/pM is isomorphic, as
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an R-module, to the tensor product (R/p) ⊗R M , which has a canonical
(R/p)-module structure, or in other words M/pM is a non-zero vector space
over the field k = R/p. This implies that there exists a non-zero k-linear
form ϕ : M/pM → k. Then the map ϕ ◦ π, where π : M → M/pM is the
canonical projection, is a non-zero R-linear map from M to R/p. The proof
is concluded.

(c) Assume first that p ∈ Supp(M); the previous point gives us the existence of
a surjective R-linear map ψ : M → R/p. If p is also in Ass(N), there there is
an injection ψ′ : R/p→ N . The composition f = ψ′ ◦ ψ is a (non-zero) map
in HomR(M,N), and it is immediate to check that it is annihilated by p.

Conversely, if p is the annihilator of a non-zero R-linear map f : M → N ,
then surely M is not the zero module, hence Ann(M) is a proper ideal and
thus it is contained in the unique maximal ideal p, so that p ∈ Supp(M).
It is also trivial to deduce that p annihilates Im(f) from the fact that it
annihilates f . This implies that p ∈ Ass(N).

6. Let R be a commutative ring, J an arbitrary set of indexes. The ring of polynomi-
als in the set of variables {Xj}j∈J with coefficients in R, denoted by R[{Xj}j∈J ],
is defined as the free R-module over the set N (J) = {α : J → N : α(j) =
0 for all but finitely many j ∈ J}. For fixed α ∈ N(J), function f : N(J) → R
taking value 1 at α and 0 elsewhere will be denoted by the monomial notation
Xn1

j1
· · ·Xnm

jm
, where ni ∈ N and {j1, . . . , jm} is the support of the function α.

Hence R[{Xj}j∈J ] is simply the set of all finite R-linear combinations of such
monomials, with the obvious operations of sum and product (making it into an
R-algebra).

The purpose of this exercise is to show that, for modules over an arbitrary (i.e.
not necessarily noetherian) ring, the set of associated primes may be empty even
if the module is non-zero.

Consider the quotient ring A = k[{Xn}n∈N]/(x2i , i ∈ N) (k arbitrary field).

(a) Show that A has a unique prime ideal, namely the ideal

p = (xi, i ∈ N)/(x2i , i ∈ N) .

(b) Prove that p is not associated to the A-module A.

Solution.

(a) It is sufficient show that the unique prime ideal of k[{Xn}n∈N] containing
a = (x2i , i ∈ N) is p′ = (xi, i ∈ N). Let thus b be a prime ideal of k[{Xn}n∈N]
containing a; then, for all i ∈ N, x2i ∈ b together with primality implies
xi ∈ b, whence b ⊃ p′. On the other hand, it is straightforward to see that
the quotient ring k[{Xn}n∈N]/p′ is isomorphic to the field k, whence p′ is a
maximal ideal. This forces b = p′ and yields the assertion.
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(b) Assume by contradiction that p annihilates an element f + (x2i , i ∈ N), with
0 6= f ∈ k[{Xn}n∈n]. In particular, for any finite subset L ⊂ N, the polyno-
mial f ·

∑
l∈L xl is in the ideal (x2j , j ∈ N). This forces f itself to belong to

the latter ideal, as one may easily check. However, this contradicts the fact
that f + (x2i , i ∈ N) is a non-zero element of A.
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