D-MATH Commutative Algebra HS 2018

Prof. Paul Nelson .
Solutions Sheet 6

ASSOCIATED PRIMES AND PRIMARY DECOMPOSITION

Let R be a commutative ring, k an algebraically closed field.

1. Let k be a field. A monomial ideal is an ideal I C k[X;,...,X,]| generated by
monomials in the variables X1,...,X,,.

(a) Characterize those monomial ideals which are prime in k[X7, ..., X,].

(b) Which monomial ideals are irreducible? Radical? Primary? (Recall that a
submodule of a module is called irreducible if it cannot be written as the
intersection of two larger submodules)

Solution.

(a) Assume first that a monomial ideal I C k[X7,...,X,] is prime, and let
X{*... X!» a monomial in a fixed finite generating set S of I, where S con-
sists only of monomials. Primality (applied inductively) forces that at least
one of the variables X effectively appearing in the monomial (i.e., for which
i; > 0) belongs to I. Applying this argument with every monomial in S, we
obtain a subset A C {1,...,n} such that X; € [ for all j € A. We claim
that I = (X,,j € A). By construction of the X; for j € A, we have that
S C (Xj,7 € A), whence I C (Xj,j € A). The converse is immediate as well,
since we have that X, € I for all j € A. We have thus proved that I can be
generated by a subset of the set of variables {X7,..., X, }.

Conversely, assume that I has this property, so that I = (X;,j € A) for
a certain subset A C {1,...,n}. We want to prove that I is prime. Let
f,g € k[X1,...,X,] be such that f,g ¢ I. Then both f and g have a
monomial in which none of the variables X;,7 € A appears. Therefore,
the product fg must also contain a monomial with the same property. In
particular, fg cannot belong to I.

(b) Assume that I C k[X},..., X,] is an irreducible monomial ideal, and let S C
I be a minimal finite geneerating set made up of monomials. Assume that
one of the monomials in S is of the form X' --- X' with ij5 15, > 0 for some

j1 # jo. Then I =11 NIy with I} = (S~ {X}'--- Xj»}, X ) and I, = (S~

(X0 X} X X;jl - X!»), where the notation X' -- -X;fl -+- X! means
that the power X;jl is not considered in the product. I; and Iy are strictly

larger than I, which is therefore not irreducible.
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Assume now that [ is generated by powers of some of the variables, i.e. [ =
(X;;, . ,X;f) for a subset {j1,...,71} € {1,...,n}. Assume I = I; NI, and
choose some finite genrating set Si, Sy for Iy, I, each made up fo monomials,
with {X;ll, .. ,X;:} C S1N.S;. Suppose by contradiction that I and I
are strictly bigger that I. Hence there exists a monomial X[!--- X" in
S1 ~ I and a monomial X' -- ~XZ;’“ in Sy ~ I. This means that none of
the monomials X;ll, e ,X;ll divides the two latter monomials. But then it is

clear that the intersection of the ideals J; = (X;ll, . ,X;ll, X7l X[m) and

Jy = (X;ll, o ,X;ll,XZ‘ll --- X;*) is already strictly bigger than I, and it is

contained in I; N I, which yields a contradiction.

It is straightforward to verify that a monomial ideal is radical if and only if it
is generated by square-free monomials, i.e. monomials of the form X, --- X,
for a certain subset {iy,...,i.} C {1,...,n}.

Finally, a monomial ideal [ is primary if and only if it contains a power of
X; for all j in a given subset of {1,...,n} and it is generated by monomials
containing no other variables. Indeed, if I is primary, than its radical Rad(I)
is prime. Using the algorithm of the next exercise and the characterization of
prime monomial ideals already given in the previous exercise, we immediately
get that I contains a power of X for some X,;’sin {X;,..., X, }, and it has to
be generated by monomials containing no other variables. For the converse, it
is easy to check that, under the assumption that I contains a power of X for
some subset of j’sin {1,...,n} and is generated by monomials containing no
other variables, then every zero-divisor in the quotient ring R/I is nilpotent.

2. The setting is the same as in Exercise 1.

(a)
(b)

Find an algorithm to compute the radical of a monomial ideal.

Find an algorithm to compute an irreducible decomposition, and thus a pri-
mary decomposition, of a monomial ideal.

Solution.

(a)

Assume S is a minimal finite generating set of a monomial ideal I, S consist-
ing of monomials. Denote by S’ the set of all monomials X;, --- X, , where
XJ'--- X/ is a monomial appearing in S. Then we claim that Rad([) is the
ideal J generated by those monomials. By the previous exercise, J is a radical
ideal, since it is generated by square-free monomials. Hence I C J implies
Rad(l) € Rad(J) = J. On the other hand, if f € J, then some power of f
will lie in I: it is sufficient (by the multinomial theorem) to check it for the
generators in S’, which is immediate.

As previously, suppose S is a minimal finite generating set of a monomial
ideal I, S consisting of monomials. For any monomial m € S, factor it into
relatively prime components m = my - - - my. Then it is immediate to verify



that I = V([ + (m;)). Thus, I = (,_, I;, where I; = (X,?), where X, is
the highest power of X;, appearing in the m; (letting m vary over S). By the
previous exercise, this is indeed an irreducible decomposition of I.

3. The setting is again the same as in the previous two exercises.

(a) Let I be the product ideal of the ideals (X7), (X1, Xa),...,(X1,...,X,). De-
termine the associated primes of I.

(b) More generally, for any subset J C {1,...,n}, let P(J) be the prime ideal
generated by {X;,7 € J}. Let I,...,I; be subsets of {1,...,n}, and set
I =[], P(I,). Let T be the "incidence graph”, whose vertices are the set
Ii;i = 1,...,t, with an edge joining I; and I; if and only if [; N I; # @.
Show that the associated primes of I are precisely those primes that may be
expressed as P([;, U---UI; ), where [;,...,I; forms a connected (i.e., any
two vertices can be joined by a finite path made up of edges) subgraph of I.

Solution. There is a detailed solution of this exercise on page 726 of [2].

4. (On the uniqueness of primary decomposition) Let R = k[X,Y]/I, where k is a
field and I = (X% XY) = (X) N (X,Y)% Show that the ideal (Y") is (X,Y)-
primary in R (considered as a module over k[X,Y]), and that

0=(X)n (Y™

is a minimal primary decomposition of 0 in R for any integer n > 1.

Solution. We first want to prove that (Y") is (X,Y)-primary in R. By a proposi-
tion seen in the lecture, it suffices to show that (X,Y") contains the zerodivisors of
R/(Y™) and that (X,Y)™ C Ann(R/(Y™)) for some integer m > 1. Assume that
0 # f,g € R are such that fg € (Y"), wich means that Y" divides a product fg,
where f , g are representatives of f, g in k[X,Y], and Y™ does not divide f . This
forces Y'|g, which means g € (Y') C (X,Y). Thus the zerodivisors of R/(Y™) are
contained in (X,Y). Moreover, we have that (X,Y)" = (Y™) C Ann(R/(Y™)),
which concludes the proof that (Y™) is (X,Y)-primary in R.

The ideal (X) C k[X, Y] is prime and strictly contains I. Therefore the projected
ideal (X) C R is a prime ideal of R, which implies Ass(R/((X))) = {(X)}. We
just proved that (Y™) is (X, Y)-primary, thus (X) and (Y™) are both primary
ideals in R whose associated primes are not equal. Therefore 0 = (X) N (Y™") is
a minimal primary decomposition for all n > 1 (the fact that the (X) and (Y™)
have trivial intersection in R is immediate by the definition of R).

5. Let R be an arbitrary commutative ring, a C R an ideal.

(a) Suppose that its radical Rad(a) is a maximal ideal. Show that a is a primary
ideal.



(b) Deduce from the previous point that arbitrary powers of maximal ideals are
primary ideals.

Solution.

(a) First, Rad(a) is a proper ideal, hence a is also proper. Then, let x,y € R
be such that zy € a and ¢ Rad(a). We need to prove that y € a. The
ideal Rad(a) + (z) is strictly bigger than Rad(a); maximality of the latter
forces R = Rad(a) + (x), which means in particular that 1 = z + ax for some
z € Rad(a) and some a € R. Now 2" € a for some integer n > 1, therefore

1=1"=(z4ax)"=2"+bx

for some element b € R. Thus, y = 2"y + bry € a, being the sum of two
elements in a. The proof is complete.

(b) Let m C R be a maximal ideal, n > 1 an integer. It is clear that the radical
of m™ contains m; moreover, Rad(m") is a proper ideal, otherwise m” would
be the whole ring. Maximality of m forces that m = Rad(m™), whence the
latter is a maximal ideal. By the previous point, m” is a primary ideal.

6. Let X be an infinite compact Hausdorff space. Consider the ring C(X) of real-
valued continuous functions on X. Is the zero ideal decomposable in this ring?

Solution. We claim that, in C'(X), any primary ideal is contained in a unique
maximal ideal. Indeed, recall that any maximal ideal m of C'(X) is of the form
m = m, for some z € X, where m, = {f € C(X) : f(z) = 0} (Exercise 26,
Chapter 1 of [1]). Assume now that q C C(X) is a primary ideal such that
qg C my Nm, for some z # y € X. Since X is a Hausdorff space, there exists
disjoint open neighborhoods V,, V, of  and y respectively. As X is also compact,
it is a normal topological space, hence by Urysohn’s lemma there exist f,g € C(X)
with f(z) =1, flxw, =0, g(y) = 1 and g|x.v, = 0. Since V, and V, are disjoint,
the product fg vanishes everywhere, hence fg € q. However, f ¢ q since f ¢ m,,
and g" ¢ q for any integer n > 1 as ¢” ¢ m,. Thus q is not primary.

If we know assume that (0) has a primary decomposition, consisting of primary
ideals q1,. .., q,, then we may write q;, C m,, for some uniquely determined point
x; € X. There exists a function f; € q; vanishing at x; and at no other point of
X (otherwise q; would be contained in some m, for y # ;). By assumption, X is
infinite, hence the product f = [];_, f; does not vanish identically on X. On the
other hand, f € T, q; C i, 9; = (0). This contradiction shows that (0) is not
decomposable in the ring C'(X).
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