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Prof. Paul Nelson

Solutions Sheet 6

Associated primes and primary decomposition

Let R be a commutative ring, k an algebraically closed field.

1. Let k be a field. A monomial ideal is an ideal I ⊂ k[X1, . . . , Xn] generated by
monomials in the variables X1, . . . , Xn.

(a) Characterize those monomial ideals which are prime in k[X1, . . . , Xn].

(b) Which monomial ideals are irreducible? Radical? Primary? (Recall that a
submodule of a module is called irreducible if it cannot be written as the
intersection of two larger submodules)

Solution.

(a) Assume first that a monomial ideal I ⊂ k[X1, . . . , Xn] is prime, and let
X i1

1 · · ·X in
n a monomial in a fixed finite generating set S of I, where S con-

sists only of monomials. Primality (applied inductively) forces that at least
one of the variables Xj effectively appearing in the monomial (i.e., for which
ij > 0) belongs to I. Applying this argument with every monomial in S, we
obtain a subset A ⊂ {1, . . . , n} such that Xj ∈ I for all j ∈ A. We claim
that I = (Xj, j ∈ A). By construction of the Xj for j ∈ A, we have that
S ⊂ (Xj, j ∈ A), whence I ⊂ (Xj, j ∈ A). The converse is immediate as well,
since we have that Xj ∈ I for all j ∈ A. We have thus proved that I can be
generated by a subset of the set of variables {X1, . . . , Xn}.
Conversely, assume that I has this property, so that I = (Xj, j ∈ A) for
a certain subset A ⊂ {1, . . . , n}. We want to prove that I is prime. Let
f, g ∈ k[X1, . . . , Xn] be such that f, g /∈ I. Then both f and g have a
monomial in which none of the variables Xj, j ∈ A appears. Therefore,
the product fg must also contain a monomial with the same property. In
particular, fg cannot belong to I.

(b) Assume that I ⊂ k[X1, . . . , Xn] is an irreducible monomial ideal, and let S ⊂
I be a minimal finite geneerating set made up of monomials. Assume that
one of the monomials in S is of the form X i1

1 · · ·X in
n with ij1 , ij2 > 0 for some

j1 6= j2. Then I = I1 ∩ I2 with I1 = (S r {X i1
1 · · ·X in

n }, X
ij1
j1

) and I2 = (S r

{X i1
1 · · ·X in

n }, X
i1
1 · · · X̂

ij1
j1
· · ·X in

n ), where the notation X i1
1 · · · X̂

ij1
j1
· · ·X in

n means

that the power X
ij1
j1

is not considered in the product. I1 and I2 are strictly
larger than I, which is therefore not irreducible.
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Assume now that I is generated by powers of some of the variables, i.e. I =
(X i1

j1
, . . . , X il

jl
) for a subset {j1, . . . , jl} ⊂ {1, . . . , n}. Assume I = I1 ∩ I2, and

choose some finite genrating set S1, S2 for I1, I2, each made up fo monomials,
with {X i1

j1
, . . . , X ir

jr
} ⊂ S1 ∩ S2. Suppose by contradiction that I1 and I2

are strictly bigger that I. Hence there exists a monomial Xr1
s1
· · ·Xrm

sm in
S1 r I and a monomial Xu1

t1 · · ·X
uk
tk

in S2 r I. This means that none of

the monomials X i1
j1
, . . . , X il

jl
divides the two latter monomials. But then it is

clear that the intersection of the ideals J1 = (X i1
j1
, . . . , X il

jl
, Xr1

s1
· · ·Xrm

sm ) and

J2 = (X i1
j1
, . . . , X il

jl
, Xu1

t1 · · ·X
uk
tk

) is already strictly bigger than I, and it is
contained in I1 ∩ I2, which yields a contradiction.

It is straightforward to verify that a monomial ideal is radical if and only if it
is generated by square-free monomials, i.e. monomials of the form Xi1 · · ·Xir

for a certain subset {i1, . . . , ir} ⊂ {1, . . . , n}.
Finally, a monomial ideal I is primary if and only if it contains a power of
Xj for all j in a given subset of {1, . . . , n} and it is generated by monomials
containing no other variables. Indeed, if I is primary, than its radical Rad(I)
is prime. Using the algorithm of the next exercise and the characterization of
prime monomial ideals already given in the previous exercise, we immediately
get that I contains a power of Xj for some Xj’s in {X1, . . . , Xn}, and it has to
be generated by monomials containing no other variables. For the converse, it
is easy to check that, under the assumption that I contains a power of Xj for
some subset of j’s in {1, . . . , n} and is generated by monomials containing no
other variables, then every zero-divisor in the quotient ring R/I is nilpotent.

2. The setting is the same as in Exercise 1.

(a) Find an algorithm to compute the radical of a monomial ideal.

(b) Find an algorithm to compute an irreducible decomposition, and thus a pri-
mary decomposition, of a monomial ideal.

Solution.

(a) Assume S is a minimal finite generating set of a monomial ideal I, S consist-
ing of monomials. Denote by S ′ the set of all monomials Xi1 · · ·Xir , where
Xj1

i1
· · ·Xjr

ir
is a monomial appearing in S. Then we claim that Rad(I) is the

ideal J generated by those monomials. By the previous exercise, J is a radical
ideal, since it is generated by square-free monomials. Hence I ⊂ J implies
Rad(I) ⊂ Rad(J) = J . On the other hand, if f ∈ J , then some power of f
will lie in I: it is sufficient (by the multinomial theorem) to check it for the
generators in S ′, which is immediate.

(b) As previously, suppose S is a minimal finite generating set of a monomial
ideal I, S consisting of monomials. For any monomial m ∈ S, factor it into
relatively prime components m = m1 · · ·mk. Then it is immediate to verify
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that I =
⋂k

i=1(I + (mi)). Thus, I =
⋂r

j=1 Ij, where Ij = (X
lj
ij

), where X
lj
ij

is
the highest power of Xij appearing in the mi (letting m vary over S). By the
previous exercise, this is indeed an irreducible decomposition of I.

3. The setting is again the same as in the previous two exercises.

(a) Let I be the product ideal of the ideals (X1), (X1, X2), . . . , (X1, . . . , Xn). De-
termine the associated primes of I.

(b) More generally, for any subset J ⊂ {1, . . . , n}, let P (J) be the prime ideal
generated by {Xj, j ∈ J}. Let I1, . . . , It be subsets of {1, . . . , n}, and set
I =

∏t
i=1 P (Ii). Let Γ be the ”incidence graph”, whose vertices are the set

Ii, i = 1, . . . , t, with an edge joining Ii and Ij if and only if Ii ∩ Ij 6= ∅.
Show that the associated primes of I are precisely those primes that may be
expressed as P (Ij1 ∪ · · · ∪ Ijs), where Ij1 , . . . , Ijs forms a connected (i.e., any
two vertices can be joined by a finite path made up of edges) subgraph of Γ.

Solution. There is a detailed solution of this exercise on page 726 of [2].

4. (On the uniqueness of primary decomposition) Let R = k[X, Y ]/I, where k is a
field and I = (X2, XY ) = (X) ∩ (X, Y )2. Show that the ideal (Y n) is (X, Y )-
primary in R (considered as a module over k[X, Y ]), and that

0 = (X) ∩ (Y n)

is a minimal primary decomposition of 0 in R for any integer n > 1.

Solution. We first want to prove that (Y n) is (X, Y )-primary in R. By a proposi-
tion seen in the lecture, it suffices to show that (X, Y ) contains the zerodivisors of
R/(Y n) and that (X, Y )m ⊂ Ann(R/(Y n)) for some integer m > 1. Assume that
0 6= f, g ∈ R are such that fg ∈ (Y n), wich means that Y n divides a product f̃ g̃,
where f̃ , g̃ are representatives of f, g in k[X, Y ], and Y n does not divide f̃ . This
forces Y |g̃, which means g ∈ (Y ) ⊂ (X, Y ). Thus the zerodivisors of R/(Y n) are
contained in (X, Y ). Moreover, we have that (X, Y )n = (Y n) ⊂ Ann(R/(Y n)),
which concludes the proof that (Y n) is (X, Y )-primary in R.

The ideal (X) ⊂ k[X, Y ] is prime and strictly contains I. Therefore the projected
ideal (X) ⊂ R is a prime ideal of R, which implies Ass(R/((X))) = {(X)}. We
just proved that (Y n) is (X, Y )-primary, thus (X) and (Y n) are both primary
ideals in R whose associated primes are not equal. Therefore 0 = (X) ∩ (Y n) is
a minimal primary decomposition for all n > 1 (the fact that the (X) and (Y n)
have trivial intersection in R is immediate by the definition of R).

5. Let R be an arbitrary commutative ring, a ⊂ R an ideal.

(a) Suppose that its radical Rad(a) is a maximal ideal. Show that a is a primary
ideal.
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(b) Deduce from the previous point that arbitrary powers of maximal ideals are
primary ideals.

Solution.

(a) First, Rad(a) is a proper ideal, hence a is also proper. Then, let x, y ∈ R
be such that xy ∈ a and x /∈ Rad(a). We need to prove that y ∈ a. The
ideal Rad(a) + (x) is strictly bigger than Rad(a); maximality of the latter
forces R = Rad(a) + (x), which means in particular that 1 = z + ax for some
z ∈ Rad(a) and some a ∈ R. Now zn ∈ a for some integer n > 1, therefore

1 = 1n = (z + ax)n = zn + bx

for some element b ∈ R. Thus, y = zny + bxy ∈ a, being the sum of two
elements in a. The proof is complete.

(b) Let m ⊂ R be a maximal ideal, n > 1 an integer. It is clear that the radical
of mn contains m; moreover, Rad(mn) is a proper ideal, otherwise mn would
be the whole ring. Maximality of m forces that m = Rad(mn), whence the
latter is a maximal ideal. By the previous point, mn is a primary ideal.

6. Let X be an infinite compact Hausdorff space. Consider the ring C(X) of real-
valued continuous functions on X. Is the zero ideal decomposable in this ring?

Solution. We claim that, in C(X), any primary ideal is contained in a unique
maximal ideal. Indeed, recall that any maximal ideal m of C(X) is of the form
m = mx for some x ∈ X, where mx = {f ∈ C(X) : f(x) = 0} (Exercise 26,
Chapter 1 of [1]). Assume now that q ⊂ C(X) is a primary ideal such that
q ⊂ mx ∩ my for some x 6= y ∈ X. Since X is a Hausdorff space, there exists
disjoint open neighborhoods Vx, Vy of x and y respectively. As X is also compact,
it is a normal topological space, hence by Urysohn’s lemma there exist f, g ∈ C(X)
with f(x) = 1, f |XrVx = 0, g(y) = 1 and g|XrVy = 0. Since Vx and Vy are disjoint,
the product fg vanishes everywhere, hence fg ∈ q. However, f /∈ q since f /∈ mx,
and gn /∈ q for any integer n > 1 as gn /∈ my. Thus q is not primary.

If we know assume that (0) has a primary decomposition, consisting of primary
ideals q1, . . . , qn, then we may write qi ⊂ mxi

for some uniquely determined point
xi ∈ X. There exists a function fi ∈ qi vanishing at xi and at no other point of
X (otherwise qi would be contained in some my for y 6= xi). By assumption, X is
infinite, hence the product f =

∏n
i=1 fi does not vanish identically on X. On the

other hand, f ∈
∏n

i=1 qi ⊂
⋂n

i=1 qi = (0). This contradiction shows that (0) is not
decomposable in the ring C(X).
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