
D-MATH Commutative Algebra HS 2018
Prof. Paul Nelson

Solutions Sheet 7

Primary decomposition and integrality

Let R be a commutative ring, k an algebraically closed field.

1. Let X be a topological space.

(a) Assume that X is irreducible. Show that any non-empty open subset O ⊂ X
is dense in X and an irreducible topological space when endowed with the
subspace topology.

(b) Assume that Y ⊂ X is irreducible as a subspace. Show that the closure Y in
X is also irreducible.

(c) Show that any irreducible subspace of X is contained in a maximal irreducible
subspace.

(d) Prove that the maximal irreducible subspaces are closed and cover X. They
are called the irreducible components of X. What are the irreducible compo-
nents of a Hausdorff space?

(e) Let X = Spec(R), where R is a commutative ring. Prove that the irreducible
components of X are the closed sets V (p) = {p′ ∈ Spec(R) : p′ ⊃ p}, where
p is a minimal prime ideal of R.

Solution.

(a) Let O ⊂ X be a non-empty open subset. Then we may write X = O∪(XrO)
as the union of two closed sets. Since X is irreducible, at least one of them
has to be the whole space X. This cannot be the case for X rO because O
is assumed to be non-empty. Therefore, O = X and thus O is dense.

Assume now that O = (O∩F1)∪(O∩F2) for some closed subsets F1, F2 ⊂ X.
This in particular gives O ⊂ F1∪F2, hence X = (F1∪F2)∪(XrO), where all
elements appearing in this union are closed. Since X r O is a proper closed
subset, irreducibility forces X = F1 ∪ F2, which in turn gives that either
F1 = X or F2 = X. As a consequence, either O = O ∩ F1 or O = O ∩ F2,
which yields the desired irreducibility.

(b) Let Y ⊂ X be irreducible as a subspace. Assume Y = F1∪F2 for some closed
subsets F1, F2 ⊂ X. Then Y = (Y ∩ F1) ∪ (Y ∩ F2), which by irreducibility
implies that one of them, say Y ∩ F1, is equal to Y . This is equivalent to
say that Y ⊂ F1, but as F1 is closed, this shows also that Y ⊂ F1, yielding
Y = F1. The proof is concluded.
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(c) Let Y ⊂ X be irreducible. By Zorn’s lemma, it suffices to prove that the
non-empty, partially ordered set P = {Y ′ ⊂ X irreducible : Y ⊂ Y ′} is
inductive, i.e. that any totally ordered subset S ⊂ P admits an upper bound.
Write S = {Yα}α∈A. If we show that Ỹ =

⋃
α∈A Yα is irreducible, we have the

desired upper bound. Assume Ỹ = (Ỹ ∩F1)∪(Ỹ ∩F2) for some closed subsets
F1, F2 ⊂ X. Then, by irreducibility of every Yα, we have that Yα ⊂ Fiα , with
iα ∈ {1, 2}, for all α ∈ A. Since S is totally ordered, we can actually choose a
common iα for every α, showing that Ỹ ⊂ Fi0 for a certain i0 ∈ {1, 2}. This
achieves the result.

(d) Let Y be a maximal irreducible subspace of X. By (b), the closure Y is also
irreducible. Maximality gives Y = Y , hence Y is closed.

Points are clearly irreducible subspaces; hence any point is contained in a
maximal irreducible subspace by the previous point, which means that max-
imal irreducible subspaces cover X.

Now assume that X is a Hausdorff space. We claim that any subset consisting
of more than one point is not irreducible, which is equivalent to say that the
irreducible components of X are points. Since any subspace of a Hausdorff
space is Hausdorff, it suffices to prove that an irreducible Hausdorff space X ′

is a singleton. Any non-empty open subset O ⊂ X ′ is dense, hence it intersect
any other non-empty open subset O′ ⊂ X. If there were two distinct point
x 6= y ∈ X, this would contradict the fact that they admit two disjoint
neighborhoods.

(e) Let X = Spec(R). Let us first prove that the irreducible closed subsets of
X are the sets V (p), where p is a prime ideal. Now V (p) = {p}, hence it
is irreducible, being the closure of a singleton. On the other hand, if a is a
radical ideal which is not prime, then there are a, b ∈ Rr a such that ab ∈ a,
thus V (a) = V (a + (a)) ∪ V (a + (b)), showing that V (a) is not irreducible.

Now clearly minimal primes have to correspond to maximal irreducible sub-
spaces, since the correspondence p 7→ V (p) is inclusion-reversing.

2. Let R be a commutative ring, and denote by R[X] the ring of polynomials in
one indeterminate over R. For any ideal a ⊂ R, denote by a[X] the set of all
polynomials in R[X] with coefficients in a.

(a) Prove that a[X] is the extension of the ideal a in R[X].

(b) Prove that, if p is a prime ideal in R, then p[X] is a prime ideal in R[X].

(c) If q is a p-primary ideal in R, then show that q[X] is p-primary in R[X].

(d) If a =
⋂n
i=1 qi is a minimal primary decomposition of a in R, then show that

a[X] =
⋂n
i=1 qi[X] is a minimal primary decomposition of a[X] in R[X].

(e) Prove that, if p is a minimal prime ideal of a in R, then p[X] is a minimal
prime ideal of a[X] in R[X].
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Solution.

(a) It suffices to remark that a[X] is an ideal (which is immediate to check), since
obviously a[X] ⊂ ae.

(b) Assume p is a prime ideal in R. The ideal p[X] is the kernel of the canonical
surjection π : R[X] → (R/p)[X], hence R[X]/p[X] ' (R/p)[X], which is an
integral domain since R/p is. Thus p[X] is a prime ideal.

(c) Let q be a p-primary ideal in R. We may write q[X] = q + q · (x), and the
same for p[X]. We now compute the radical of q[X]: we have

rad(q[X]) = rad(rad(q) + rad(q · (x))) = rad(p + rad(q) ∩ rad((x)))

= rad(p + p · (x)) = rad(p[X]) = p[X] .

It now suffices to prove that q[X] is primary. As before, the quotientR[X]/q[X]
is isomorphic to (R/q)[X]. Since q is primary in R, every zerodivisor in R/q
is nilpotent. Suppose

f̄(X) =
n∑
i=0

b̄iX
i ∈ (R/q)[X]

is a zerodivisor. Then, by an exercise of the first sheet, there exists ā ∈ R/q
such that ā · f̄(X) = 0. This implies that any b̄i is a zerodivisor, hence
nilpotent, in R/q. By the same exercise, we conclude that f̄(X) is nilpotent.

(d) Let f(X) =
∑m

i=0 biX
i be a polynomial in R[X]. Then

f(X) ∈ a[X]⇐⇒ bi ∈ a ∀ i⇐⇒ bi ∈ qj ∀ i, j ⇐⇒ ∀ j f(X) ∈ qj[X] ,

so that a[X] =
⋂n
j=1 qj[X], as desired. By the previous point, each qj[X]

is primary, so we have indeed a primary decomposition. Irredundancy of
the decomposition follows immediately from the analogous property of the
decomposition of a and the fact that

⋂
i 6=j qi[X] = (

⋂
i 6=j qi)[X] for all j =

1, . . . n.

(e) Point (b) gives us that p[X] is a prime ideal containing a[X]. Assume now
that q ∈ Spec(R[X]) is such that a[X] ⊂ q ⊂ p[X]; taking contractions, we
have a ⊂ q ∩ R ⊂ p, with q ∩ R prime in R. By minimality of p over a, this
forces q∩R = p, which in turn implies q = p[X]. Therefore, p[X] is minimal
over a[X].

3. The purpose of this exercise is to prove the Krull intersection theorem: let R be
a noetherian ring, a ⊂ R an ideal, and denote by b the intersection of all powers
an, n > 1. Then:

• ba = b;
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• b(1− a) = (0) for some element a ∈ a;

• if R is a domain and a is a proper ideal, then b = (0).

(a) Prove the following preliminary result: if R is a noetherian ring and I ⊂ R
is an ideal, then (rad(I))n ⊂ I for some positive integer n.

(b) Use the previous point to prove the first assertion of Krull’s intersection
theorem.

(Hint: clearly the non-trivial inclusion is b ⊂ ba. Prove that b ⊂ q whenever
q is a primary ideal containing ba and deduce the result by means of the
primary decomposition theorem)

(c) You may admit the following result: if M is a finitely generated R-module,
and I ⊂ R is an ideal such that IM = M , then M is annihilated by an
element of the form 1− a, with a ∈ I.

Using this, prove the last two assertions of Krull’s intersection theorem.

Solution.

(a) The ideal rad(I) is generated by finitely many elements x1, . . . , xr; for any
i = 1, . . . r, there exists an integer mi > 1 such that xmii ∈ I. Using the
multinomial theorem, it is easy to verify that any product of n elements of
rad(I), where n =

∑
imi, lies in I, so that (rad(I))n ⊂ I.

(b) The inclusion b ⊃ ba follows from the fact that b is an ideal. Since R is
noetherian, the ideal ba is decomposable, hence it suffices to prove that b ⊂ q
whenever q is a primary ideal containing ba. For the purpose of contradiction,
assume that b is not contained is some primary ideal q such that q ⊃ ba. Pick
an element x ∈ b r q; then xa ∈ ba ⊂ q for all a ∈ a. Primality of q forces
a ⊂ rad(q). By the previous point, an ⊂ q for some integer n > 1, which
yields b ⊂ an ⊂ q, contradiction.

(c) The ideal b is a finitely generated R-module (since R is noetherian). The
previous point gives us ba = b, thus, by the admitted result, b is annihilated
by an element of the form 1−a, with a ∈ a. This proves the second assertion
of the theorem.

If a is proper, then 1 /∈ a, hence 1− a 6= 0 for all a ∈ a. Since R is a domain,
the second point of the theorem implies that b = (0).

4. Let ϕ : R → S be an integral homomorphism of rings. Show that the induced
continuous map ϕ∗ : Spec(S)→ Spec(R) is closed, namely that it maps closed sets
to closed sets.

Solution. By definition of an integral homomorphism, S in integral over the subring
S ′ = ϕ(R). We write ϕ as the composition of ϕ′ : R → S ′ and the inclusion
i : S ′ → S. It suffices to prove that both (ϕ′)∗ and i∗ are closed maps.
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By an exercise in the previous sheets, (ϕ′)∗ induces an homeomorphism between
Spec(S ′) and V (kerϕ) ⊂ Spec(R) (since ϕ′ is surjective). V (kerϕ) being closed in
Spec(R), (ϕ′)∗ maps closed sets of Spec(S ′) to closed sets of Spec(R).

It remains to prove that i∗ is a closed map. Let K ⊂ Spec(S) be closed, which
means that there exists a radical ideal b ⊂ S such that K = V (b). We claim that
i∗(K) = V (b ∩ S ′), so that in particular it is closed in Spec(S ′). If q ⊃ b is prime
in S, then q ∩ S ′ ⊃ b ∩ S ′, thus i∗(K) ⊂ V (b ∩ S ′).
Now let p ⊃ b∩S ′, and denote by p its image in S ′/b∩S ′ under the projection map.
The induced ting homomorphism η : S ′/S ′ ∩ b → S/b is integral, so by theorem
5.10 in [1] there exists q ∈ Spec(S/b) such that η∗(q) = p. The conclusion is
achieved recalling that there are canonical homeomorphisms Spec(S/b) ' V (b)
and Spec(S ′/b ∩ S ′) ' V (b ∩ S ′).

5. Let R be a subring of a ring S such that S is integral over R, and let ϕ : R → Ω
be a ring homomorphism of A into an algebraically closed field Ω. Show that ϕ
admits an extension to a ring homomorphism Φ: S → Ω.

(Hint: use theorem 5.10 in [1])

Solution. Ω is an integral domain, hence ϕ(R) is a domain as well. This implies
that p = kerϕ is a prime ideal in R. By theorem 5.10 in [1], there is a prime
ideal q ⊂ S such that q ∩ R = p. Then S/q is integral over R/p; therefore, it is
sufficient to prove the result when R and S are integral domains and ϕ : R → Ω
is an injective map.

Apply Zorn’s lemma to show that there is a maximal extension Φ: S ′ → Ω of ϕ to
a subring R ⊂ S ′ ⊂ S. Our aim is to show that S ′ = S. By contradiction, assume
there exists x ∈ S r S ′. Since x is integral over R, it is a fortiori integral over
S ′; let f(X) ∈ S ′[X] be a monic polynomial such that f(x) = 0. Let f̃(X) be the
canonical image of f(X) in Ω(X). The composed map

S ′[X]→ Ω[X]� Ω[X]/(f̃(X))

factors through an injection S ′[x] ' S ′[X]/(f(X))→ Ω[X]/(f̃(X)), which clearly
extends Φ. Now Ω is algebraically closed, hence Ω[X]/(f̃(X)) ' Ω, being an
algebraic extension of Ω. This contradicts maximality of S ′.

6. Let G be a finite group of automorphisms of a ring R, and let RG denote the
subset of G-invariant elements, i.e. RG = {x ∈ R : σ(x) = x for all σ ∈ G}.

(a) Prove that RG is a subring of R and that R is integral over RG.

(b) Suppose S ⊂ R is a multiplicatively closed subset such that σ(S) ⊂ S for all
σ ∈ G, and denote by SG = S ∩RG. Show that the action of G on R extends
to an action on R[S−1], and prove that

RG[(SG)−1] ' (R[S−1])G .
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(c) Let p be a prime ideal of RG, and let P the set of prime ideals of R whose
contraction is p. Show that G acts transitively on P and deduce that P is a
finite set.

Solution.

(a) The fact that RG is a subring of R is clear since each σ ∈ G is a ring
automorphism. Let x ∈ R, and consider the monic polynomial

f(T ) =
∏
σ∈G

(T − σ(x)) ∈ R[T ] .

It is clear that x is a root of f ; moreover, for each σ0 ∈ G,

σ0(f(T )) =
∏
σ∈G

(T − σ0(σ(x))) =
∏
τ∈G

(T − τ(x)) = f(T )

since composition with σ0 induces a permutation of G. We deduce that all
the coefficients of f(T ) are G-invariant, namely f(T ) ∈ RG(T ). Thus, x is
integral over RG.

(b) We need to extend each σ ∈ G to an automorphism σ of R[S−1]. The only
possible way to do this is to define σ(xs−1) = σ(x)σ(s)−1 for all element xs−1

of R[S−1]. This is well defined as a map from R[S−1] to itself, as S is invari-
ant under G, and it is immediate to check that it is a ring homomorphism
extending σ to R[S−1]. Since we can likewise construct σ−1, and since obvi-
ously σ−1 ◦ σ = σ−1 ◦ σ = idR = idR[S−1], we get that σ is an automorphism
of R[S1]. In this way, we have extended the action of G on R to an action on
R[S−1].

The canonical ring homomorphism RG ↪→ R → R[S−1] factors through a
morphism χ : RG → (R[S−1])G; each element of SG gets mapped to an in-
vertible element of (R[S−1])G by χ, thus the universal property of localization
gives the existence of a ring map χ̃ : RG[(SG)−1]→ (R[S−1])G. We claim that
χ̃ is bijective, so that we get the desired isomorphism.

First, assume xs−1 = 0 in (R[S−1])G. Then, there exists y ∈ S such that
yx = 0. Taking y′ =

∏
σ∈G σ(y), we also get y′x = 0. This means however

that xs−1 = 0 already in RG[(SG)−1]; thus, X̃ is bijective.

If xs−1 is an arbitrary element of R[S−1]G, then consider s′ =
∏

σ∈Gr{idG}.

Since both xs−1 and ss′ are G-invariant, then so is their product xs′. Hene,
for any σ ∈ G, there exists tσ ∈ S such that tσxs

′ = tσσ(xs′). Define
t =

∏
τ∈G τ(

∏
σ∈G tσ). We have txs′ ∈ RG, thus xs−1 = (ts′x)(ts′s)−1, with

the numerator belonging to RG. The proof is concluded.

(c) Let q, q′ be elements of P . If x ∈ q, then
∏

σ∈G σ
−1(x) ∈ RG∩q = p. Since also

p = R∩ q′, we get
∏

σ∈G σ
−1(x) ∈ q′. Primality of q′ implies that there exists
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some element σ ∈ G such that y = σ−1(x) ∈ q′. Hence, x = σ(y) ∈ σ(q′). As
x was arbitrary in q, we deduce that q ⊂

⋃
σ∈G σ(q′). Primality forces again

q ⊂ σ(q′). Now the fact that q ∩ RG = p and σ(q′) ∩ RG = σ(q′) ∩ σ(RG) =
σ(q′ ∩ RG) = σ(p) = p, corollary 5.9 in [1] gives us that actually q = σ(q′).
We have thus shown that G acts transitively on P ; since G is finite, P must
then be also finite.
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