Solutions Sheet 7

Primary decomposition and integrality

Let R be a commutative ring, k an algebraically closed field.

1. Let X be a topological space.
(a) Assume that X is irreducible. Show that any non-empty open subset $O \subset X$ is dense in X and an irreducible topological space when endowed with the subspace topology.
(b) Assume that $Y \subset X$ is irreducible as a subspace. Show that the closure \bar{Y} in X is also irreducible.
(c) Show that any irreducible subspace of X is contained in a maximal irreducible subspace.
(d) Prove that the maximal irreducible subspaces are closed and cover X. They are called the irreducible components of X. What are the irreducible components of a Hausdorff space?
(e) Let $X=\operatorname{Spec}(R)$, where R is a commutative ring. Prove that the irreducible components of X are the closed sets $V(\mathfrak{p})=\left\{\mathfrak{p}^{\prime} \in \operatorname{Spec}(R): \mathfrak{p}^{\prime} \supset \mathfrak{p}\right\}$, where \mathfrak{p} is a minimal prime ideal of R.

Solution.

(a) Let $O \subset X$ be a non-empty open subset. Then we may write $X=\bar{O} \cup(X \backslash O)$ as the union of two closed sets. Since X is irreducible, at least one of them has to be the whole space X. This cannot be the case for $X \backslash O$ because O is assumed to be non-empty. Therefore, $\bar{O}=X$ and thus O is dense.
Assume now that $O=\left(O \cap F_{1}\right) \cup\left(O \cap F_{2}\right)$ for some closed subsets $F_{1}, F_{2} \subset X$. This in particular gives $O \subset F_{1} \cup F_{2}$, hence $X=\left(F_{1} \cup F_{2}\right) \cup(X \backslash O)$, where all elements appearing in this union are closed. Since $X \backslash O$ is a proper closed subset, irreducibility forces $X=F_{1} \cup F_{2}$, which in turn gives that either $F_{1}=X$ or $F_{2}=X$. As a consequence, either $O=O \cap F_{1}$ or $O=O \cap F_{2}$, which yields the desired irreducibility.
(b) Let $Y \subset X$ be irreducible as a subspace. Assume $\bar{Y}=F_{1} \cup F_{2}$ for some closed subsets $F_{1}, F_{2} \subset X$. Then $Y=\left(Y \cap F_{1}\right) \cup\left(Y \cap F_{2}\right)$, which by irreducibility implies that one of them, say $Y \cap F_{1}$, is equal to Y. This is equivalent to say that $Y \subset F_{1}$, but as F_{1} is closed, this shows also that $\bar{Y} \subset F_{1}$, yielding $\bar{Y}=F_{1}$. The proof is concluded.
(c) Let $Y \subset X$ be irreducible. By Zorn's lemma, it suffices to prove that the non-empty, partially ordered set $\mathcal{P}=\left\{Y^{\prime} \subset X\right.$ irreducible : $\left.Y \subset Y^{\prime}\right\}$ is inductive, i.e. that any totally ordered subset $\mathcal{S} \subset \mathcal{P}$ admits an upper bound. Write $\mathcal{S}=\left\{Y_{\alpha}\right\}_{\alpha \in A}$. If we show that $\tilde{Y}=\bigcup_{\alpha \in A} Y_{\alpha}$ is irreducible, we have the desired upper bound. Assume $\tilde{Y}=\left(\tilde{Y} \cap F_{1}\right) \cup\left(\tilde{Y} \cap F_{2}\right)$ for some closed subsets $F_{1}, F_{2} \subset X$. Then, by irreducibility of every Y_{α}, we have that $Y_{\alpha} \subset F_{i_{\alpha}}$, with $i_{\alpha} \in\{1,2\}$, for all $\alpha \in A$. Since \mathcal{S} is totally ordered, we can actually choose a common i_{α} for every α, showing that $\tilde{Y} \subset F_{i_{0}}$ for a certain $i_{0} \in\{1,2\}$. This achieves the result.
(d) Let Y be a maximal irreducible subspace of X. By (b), the closure \bar{Y} is also irreducible. Maximality gives $Y=\bar{Y}$, hence Y is closed.
Points are clearly irreducible subspaces; hence any point is contained in a maximal irreducible subspace by the previous point, which means that maximal irreducible subspaces cover X.
Now assume that X is a Hausdorff space. We claim that any subset consisting of more than one point is not irreducible, which is equivalent to say that the irreducible components of X are points. Since any subspace of a Hausdorff space is Hausdorff, it suffices to prove that an irreducible Hausdorff space X^{\prime} is a singleton. Any non-empty open subset $O \subset X^{\prime}$ is dense, hence it intersect any other non-empty open subset $O^{\prime} \subset X$. If there were two distinct point $x \neq y \in X$, this would contradict the fact that they admit two disjoint neighborhoods.
(e) Let $X=\operatorname{Spec}(R)$. Let us first prove that the irreducible closed subsets of X are the sets $V(\mathfrak{p})$, where \mathfrak{p} is a prime ideal. Now $V(\mathfrak{p})=\overline{\{\mathfrak{p}\}}$, hence it is irreducible, being the closure of a singleton. On the other hand, if \mathfrak{a} is a radical ideal which is not prime, then there are $a, b \in R \backslash \mathfrak{a}$ such that $a b \in \mathfrak{a}$, thus $V(\mathfrak{a})=V(\mathfrak{a}+(a)) \cup V(\mathfrak{a}+(b))$, showing that $V(\mathfrak{a})$ is not irreducible. Now clearly minimal primes have to correspond to maximal irreducible subspaces, since the correspondence $\mathfrak{p} \mapsto V(\mathfrak{p})$ is inclusion-reversing.
2. Let R be a commutative ring, and denote by $R[X]$ the ring of polynomials in one indeterminate over R. For any ideal $\mathfrak{a} \subset R$, denote by $\mathfrak{a}[X]$ the set of all polynomials in $R[X]$ with coefficients in \mathfrak{a}.
(a) Prove that $\mathfrak{a}[X]$ is the extension of the ideal \mathfrak{a} in $R[X]$.
(b) Prove that, if \mathfrak{p} is a prime ideal in R, then $\mathfrak{p}[X]$ is a prime ideal in $R[X]$.
(c) If \mathfrak{q} is a \mathfrak{p}-primary ideal in R, then show that $\mathfrak{q}[X]$ is \mathfrak{p}-primary in $R[X]$.
(d) If $\mathfrak{a}=\bigcap_{i=1}^{n} \mathfrak{q}_{i}$ is a minimal primary decomposition of \mathfrak{a} in R, then show that $\mathfrak{a}[X]=\bigcap_{i=1}^{n} \mathfrak{q}_{i}[X]$ is a minimal primary decomposition of $\mathfrak{a}[X]$ in $R[X]$.
(e) Prove that, if \mathfrak{p} is a minimal prime ideal of \mathfrak{a} in R, then $\mathfrak{p}[X]$ is a minimal prime ideal of $\mathfrak{a}[X]$ in $R[X]$.

Solution.

(a) It suffices to remark that $\mathfrak{a}[X]$ is an ideal (which is immediate to check), since obviously $\mathfrak{a}[X] \subset \mathfrak{a}^{e}$.
(b) Assume \mathfrak{p} is a prime ideal in R. The ideal $\mathfrak{p}[X]$ is the kernel of the canonical surjection $\pi: R[X] \rightarrow(R / \mathfrak{p})[X]$, hence $R[X] / \mathfrak{p}[X] \simeq(R / \mathfrak{p})[X]$, which is an integral domain since R / \mathfrak{p} is. Thus $\mathfrak{p}[X]$ is a prime ideal.
(c) Let \mathfrak{q} be a \mathfrak{p}-primary ideal in R. We may write $\mathfrak{q}[X]=\mathfrak{q}+\mathfrak{q} \cdot(x)$, and the same for $\mathfrak{p}[X]$. We now compute the radical of $\mathfrak{q}[X]$: we have

$$
\begin{aligned}
\operatorname{rad}(\mathfrak{q}[X]) & =\operatorname{rad}(\operatorname{rad}(\mathfrak{q})+\operatorname{rad}(\mathfrak{q} \cdot(x)))=\operatorname{rad}(\mathfrak{p}+\operatorname{rad}(\mathfrak{q}) \cap \operatorname{rad}((x))) \\
& =\operatorname{rad}(\mathfrak{p}+\mathfrak{p} \cdot(x))=\operatorname{rad}(\mathfrak{p}[X])=\mathfrak{p}[X]
\end{aligned}
$$

It now suffices to prove that $\mathfrak{q}[X]$ is primary. As before, the quotient $R[X] / \mathfrak{q}[X]$ is isomorphic to $(R / \mathfrak{q})[X]$. Since \mathfrak{q} is primary in R, every zerodivisor in R / \mathfrak{q} is nilpotent. Suppose

$$
\bar{f}(X)=\sum_{i=0}^{n} \bar{b}_{i} X^{i} \in(R / \mathfrak{q})[X]
$$

is a zerodivisor. Then, by an exercise of the first sheet, there exists $\bar{a} \in R / \mathfrak{q}$ such that $\bar{a} \cdot \bar{f}(X)=0$. This implies that any \bar{b}_{i} is a zerodivisor, hence nilpotent, in R / \mathfrak{q}. By the same exercise, we conclude that $\bar{f}(X)$ is nilpotent.
(d) Let $f(X)=\sum_{i=0}^{m} b_{i} X^{i}$ be a polynomial in $R[X]$. Then

$$
f(X) \in \mathfrak{a}[X] \Longleftrightarrow b_{i} \in \mathfrak{a} \forall i \Longleftrightarrow b_{i} \in \mathfrak{q}_{j} \forall i, j \Longleftrightarrow \forall j f(X) \in \mathfrak{q}_{j}[X]
$$

so that $\mathfrak{a}[X]=\bigcap_{j=1}^{n} \mathfrak{q}_{j}[X]$, as desired. By the previous point, each $\mathfrak{q}_{j}[X]$ is primary, so we have indeed a primary decomposition. Irredundancy of the decomposition follows immediately from the analogous property of the decomposition of \mathfrak{a} and the fact that $\bigcap_{i \neq j} \mathfrak{q}_{i}[X]=\left(\bigcap_{i \neq j} \mathfrak{q}_{i}\right)[X]$ for all $j=$ $1, \ldots n$.
(e) Point (b) gives us that $\mathfrak{p}[X]$ is a prime ideal containing $\mathfrak{a}[X]$. Assume now that $\mathfrak{q} \in \operatorname{Spec}(R[X])$ is such that $\mathfrak{a}[X] \subset \mathfrak{q} \subset \mathfrak{p}[X]$; taking contractions, we have $\mathfrak{a} \subset \mathfrak{q} \cap R \subset \mathfrak{p}$, with $\mathfrak{q} \cap R$ prime in R. By minimality of \mathfrak{p} over \mathfrak{a}, this forces $\mathfrak{q} \cap R=\mathfrak{p}$, which in turn implies $\mathfrak{q}=\mathfrak{p}[X]$. Therefore, $\mathfrak{p}[X]$ is minimal over $\mathfrak{a}[X]$.
3. The purpose of this exercise is to prove the Krull intersection theorem: let R be a noetherian ring, $\mathfrak{a} \subset R$ an ideal, and denote by \mathfrak{b} the intersection of all powers $\mathfrak{a}^{n}, n \geqslant 1$. Then:

- $\mathfrak{b a}=\mathfrak{b}$;
- $\mathfrak{b}(1-a)=(0)$ for some element $a \in \mathfrak{a}$;
- if R is a domain and \mathfrak{a} is a proper ideal, then $\mathfrak{b}=(0)$.
(a) Prove the following preliminary result: if R is a noetherian ring and $I \subset R$ is an ideal, then $(\operatorname{rad}(I))^{n} \subset I$ for some positive integer n.
(b) Use the previous point to prove the first assertion of Krull's intersection theorem.
(Hint: clearly the non-trivial inclusion is $\mathfrak{b} \subset \mathfrak{b a}$. Prove that $\mathfrak{b} \subset \mathfrak{q}$ whenever \mathfrak{q} is a primary ideal containing $\mathfrak{b a}$ and deduce the result by means of the primary decomposition theorem)
(c) You may admit the following result: if M is a finitely generated R-module, and $I \subset R$ is an ideal such that $I M=M$, then M is annihilated by an element of the form $1-a$, with $a \in I$.
Using this, prove the last two assertions of Krull's intersection theorem.

Solution.

(a) The ideal $\operatorname{rad}(I)$ is generated by finitely many elements x_{1}, \ldots, x_{r}; for any $i=1, \ldots r$, there exists an integer $m_{i} \geqslant 1$ such that $x_{i}^{m_{i}} \in I$. Using the multinomial theorem, it is easy to verify that any product of n elements of $\operatorname{rad}(I)$, where $n=\sum_{i} m_{i}$, lies in I, so that $(\operatorname{rad}(I))^{n} \subset I$.
(b) The inclusion $\mathfrak{b} \supset \mathfrak{b a}$ follows from the fact that \mathfrak{b} is an ideal. Since R is noetherian, the ideal $\mathfrak{b a}$ is decomposable, hence it suffices to prove that $\mathfrak{b} \subset \mathfrak{q}$ whenever \mathfrak{q} is a primary ideal containing $\mathfrak{b a}$. For the purpose of contradiction, assume that \mathfrak{b} is not contained is some primary ideal \mathfrak{q} such that $\mathfrak{q} \supset \mathfrak{b a}$. Pick an element $x \in \mathfrak{b} \backslash \mathfrak{q}$; then $x a \in \mathfrak{b a} \subset \mathfrak{q}$ for all $a \in \mathfrak{a}$. Primality of \mathfrak{q} forces $\mathfrak{a} \subset \operatorname{rad}(\mathfrak{q})$. By the previous point, $\mathfrak{a}^{n} \subset \mathfrak{q}$ for some integer $n \geqslant 1$, which yields $\mathfrak{b} \subset \mathfrak{a}^{n} \subset \mathfrak{q}$, contradiction.
(c) The ideal \mathfrak{b} is a finitely generated R-module (since R is noetherian). The previous point gives us $\mathfrak{b a}=\mathfrak{b}$, thus, by the admitted result, \mathfrak{b} is annihilated by an element of the form $1-a$, with $a \in \mathfrak{a}$. This proves the second assertion of the theorem.
If \mathfrak{a} is proper, then $1 \notin \mathfrak{a}$, hence $1-a \neq 0$ for all $a \in \mathfrak{a}$. Since R is a domain, the second point of the theorem implies that $\mathfrak{b}=(0)$.
4. Let $\varphi: R \rightarrow S$ be an integral homomorphism of rings. Show that the induced continuous map $\varphi^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ is closed, namely that it maps closed sets to closed sets.

Solution. By definition of an integral homomorphism, S in integral over the subring $S^{\prime}=\varphi(R)$. We write φ as the composition of $\varphi^{\prime}: R \rightarrow S^{\prime}$ and the inclusion $i: S^{\prime} \rightarrow S$. It suffices to prove that both $\left(\varphi^{\prime}\right)^{*}$ and i^{*} are closed maps.

By an exercise in the previous sheets, $\left(\varphi^{\prime}\right)^{*}$ induces an homeomorphism between $\operatorname{Spec}\left(S^{\prime}\right)$ and $V(\operatorname{ker} \varphi) \subset \operatorname{Spec}(R)$ (since φ^{\prime} is surjective). $V(\operatorname{ker} \varphi)$ being closed in $\operatorname{Spec}(R),\left(\varphi^{\prime}\right)^{*}$ maps closed sets of $\operatorname{Spec}\left(S^{\prime}\right)$ to closed sets of $\operatorname{Spec}(R)$.
It remains to prove that i^{*} is a closed map. Let $K \subset \operatorname{Spec}(S)$ be closed, which means that there exists a radical ideal $\mathfrak{b} \subset S$ such that $K=V(\mathfrak{b})$. We claim that $i^{*}(K)=V\left(\mathfrak{b} \cap S^{\prime}\right)$, so that in particular it is closed in $\operatorname{Spec}\left(S^{\prime}\right)$. If $\mathfrak{q} \supset \mathfrak{b}$ is prime in S, then $\mathfrak{q} \cap S^{\prime} \supset \mathfrak{b} \cap S^{\prime}$, thus $i^{*}(K) \subset V\left(\mathfrak{b} \cap S^{\prime}\right)$.
Now let $\mathfrak{p} \supset \mathfrak{b} \cap S^{\prime}$, and denote by $\overline{\mathfrak{p}}$ its image in $S^{\prime} / \mathfrak{b} \cap S^{\prime}$ under the projection map. The induced ting homomorphism $\eta: S^{\prime} / S^{\prime} \cap \mathfrak{b} \rightarrow S / \mathfrak{b}$ is integral, so by theorem 5.10 in [1] there exists $\overline{\mathfrak{q}} \in \operatorname{Spec}(S / \mathfrak{b})$ such that $\eta^{*}(\overline{\mathfrak{q}})=\overline{\mathfrak{p}}$. The conclusion is achieved recalling that there are canonical homeomorphisms $\operatorname{Spec}(S / \mathfrak{b}) \simeq V(\mathfrak{b})$ and $\operatorname{Spec}\left(S^{\prime} / \mathfrak{b} \cap S^{\prime}\right) \simeq V\left(\mathfrak{b} \cap S^{\prime}\right)$.
5. Let R be a subring of a ring S such that S is integral over R, and let $\varphi: R \rightarrow \Omega$ be a ring homomorphism of A into an algebraically closed field Ω. Show that φ admits an extension to a ring homomorphism $\Phi: S \rightarrow \Omega$.
(Hint: use theorem 5.10 in [1])
Solution. Ω is an integral domain, hence $\varphi(R)$ is a domain as well. This implies that $\mathfrak{p}=\operatorname{ker} \varphi$ is a prime ideal in R. By theorem 5.10 in [1], there is a prime ideal $\mathfrak{q} \subset S$ such that $\mathfrak{q} \cap R=\mathfrak{p}$. Then S / \mathfrak{q} is integral over R / \mathfrak{p}; therefore, it is sufficient to prove the result when R and S are integral domains and $\varphi: R \rightarrow \Omega$ is an injective map.
Apply Zorn's lemma to show that there is a maximal extension $\Phi: S^{\prime} \rightarrow \Omega$ of φ to a subring $R \subset S^{\prime} \subset S$. Our aim is to show that $S^{\prime}=S$. By contradiction, assume there exists $x \in S \backslash S^{\prime}$. Since x is integral over R, it is a fortiori integral over S^{\prime}; let $f(X) \in S^{\prime}[X]$ be a monic polynomial such that $f(x)=0$. Let $\tilde{f}(X)$ be the canonical image of $f(X)$ in $\Omega(X)$. The composed map

$$
S^{\prime}[X] \rightarrow \Omega[X] \rightarrow \Omega[X] /(\tilde{f}(X))
$$

factors through an injection $S^{\prime}[x] \simeq S^{\prime}[X] /(f(X)) \rightarrow \Omega[X] /(\tilde{f}(X))$, which clearly extends Φ. Now Ω is algebraically closed, hence $\Omega[X] /(\tilde{f}(X)) \simeq \Omega$, being an algebraic extension of Ω. This contradicts maximality of S^{\prime}.
6. Let G be a finite group of automorphisms of a ring R, and let R^{G} denote the subset of G-invariant elements, i.e. $R^{G}=\{x \in R: \sigma(x)=x$ for all $\sigma \in G\}$.
(a) Prove that R^{G} is a subring of R and that R is integral over R^{G}.
(b) Suppose $S \subset R$ is a multiplicatively closed subset such that $\sigma(S) \subset S$ for all $\sigma \in G$, and denote by $S^{G}=S \cap R^{G}$. Show that the action of G on R extends to an action on $R\left[S^{-1}\right]$, and prove that

$$
R^{G}\left[\left(S^{G}\right)^{-1}\right] \simeq\left(R\left[S^{-1}\right]\right)^{G} .
$$

(c) Let \mathfrak{p} be a prime ideal of R^{G}, and let P the set of prime ideals of R whose contraction is \mathfrak{p}. Show that G acts transitively on P and deduce that P is a finite set.

Solution.

(a) The fact that R^{G} is a subring of R is clear since each $\sigma \in G$ is a ring automorphism. Let $x \in R$, and consider the monic polynomial

$$
f(T)=\prod_{\sigma \in G}(T-\sigma(x)) \in R[T]
$$

It is clear that x is a root of f; moreover, for each $\sigma_{0} \in G$,

$$
\sigma_{0}(f(T))=\prod_{\sigma \in G}\left(T-\sigma_{0}(\sigma(x))\right)=\prod_{\tau \in G}(T-\tau(x))=f(T)
$$

since composition with σ_{0} induces a permutation of G. We deduce that all the coefficients of $f(T)$ are G-invariant, namely $f(T) \in R^{G}(T)$. Thus, x is integral over R^{G}.
(b) We need to extend each $\sigma \in G$ to an automorphism $\bar{\sigma}$ of $R\left[S^{-1}\right]$. The only possible way to do this is to define $\bar{\sigma}\left(x s^{-1}\right)=\sigma(x) \sigma(s)^{-1}$ for all element $x s^{-1}$ of $R\left[S^{-1}\right]$. This is well defined as a map from $R\left[S^{-1}\right]$ to itself, as S is invariant under G, and it is immediate to check that it is a ring homomorphism extending σ to $R\left[S^{-1}\right]$. Since we can likewise construct $\overline{\sigma^{-1}}$, and since obviously $\overline{\sigma^{-1}} \circ \bar{\sigma}=\overline{\sigma^{-1} \circ \sigma}=\overline{\mathrm{id}_{R}}=\operatorname{id}_{R\left[S^{-1}\right]}$, we get that $\bar{\sigma}$ is an automorphism of $R\left[S^{1}\right]$. In this way, we have extended the action of G on R to an action on $R\left[S^{-1}\right]$.
The canonical ring homomorphism $R^{G} \hookrightarrow R \rightarrow R\left[S^{-1}\right]$ factors through a morphism $\chi: R^{G} \rightarrow\left(R\left[S^{-1}\right]\right)^{G}$; each element of S^{G} gets mapped to an invertible element of $\left(R\left[S^{-1}\right]\right)^{G}$ by χ, thus the universal property of localization gives the existence of a ring map $\tilde{\chi}: R^{G}\left[\left(S^{G}\right)^{-1}\right] \rightarrow\left(R\left[S^{-1}\right]\right)^{G}$. We claim that $\tilde{\chi}$ is bijective, so that we get the desired isomorphism.
First, assume $x s^{-1}=0$ in $\left(R\left[S^{-1}\right]\right)^{G}$. Then, there exists $y \in S$ such that $y x=0$. Taking $y^{\prime}=\prod_{\sigma \in G} \sigma(y)$, we also get $y^{\prime} x=0$. This means however that $x s^{-1}=0$ already in $R^{G}\left[\left(S^{G}\right)^{-1}\right]$; thus, \tilde{X} is bijective.
If $x s^{-1}$ is an arbitrary element of $R\left[S^{-1}\right]^{G}$, then consider $s^{\prime}=\prod_{\sigma \in G \backslash\left\{\operatorname{id}_{G}\right\}}$. Since both $x s^{-1}$ and $s s^{\prime}$ are G-invariant, then so is their product $x s^{\prime}$. Hene, for any $\sigma \in G$, there exists $t_{\sigma} \in S$ such that $t_{\sigma} x s^{\prime}=t_{\sigma} \sigma\left(x s^{\prime}\right)$. Define $t=\prod_{\tau \in G} \tau\left(\prod_{\sigma \in G} t_{\sigma}\right)$. We have $t x s^{\prime} \in R^{G}$, thus $x s^{-1}=\left(t s^{\prime} x\right)\left(t s^{\prime} s\right)^{-1}$, with the numerator belonging to R^{G}. The proof is concluded.
(c) Let $\mathfrak{q}, \mathfrak{q}^{\prime}$ be elements of P. If $x \in \mathfrak{q}$, then $\prod_{\sigma \in G} \sigma^{-1}(x) \in R^{G} \cap \mathfrak{q}=\mathfrak{p}$. Since also $\mathfrak{p}=R \cap \mathfrak{q}^{\prime}$, we get $\prod_{\sigma \in G} \sigma^{-1}(x) \in \mathfrak{q}^{\prime}$. Primality of \mathfrak{q}^{\prime} implies that there exists
some element $\sigma \in G$ such that $y=\sigma^{-1}(x) \in \mathfrak{q}^{\prime}$. Hence, $x=\sigma(y) \in \sigma\left(\mathfrak{q}^{\prime}\right)$. As x was arbitrary in \mathfrak{q}, we deduce that $\mathfrak{q} \subset \bigcup_{\sigma \in G} \sigma\left(\mathfrak{q}^{\prime}\right)$. Primality forces again $\mathfrak{q} \subset \sigma\left(\mathfrak{q}^{\prime}\right)$. Now the fact that $\mathfrak{q} \cap R^{G}=\mathfrak{p}$ and $\sigma\left(\mathfrak{q}^{\prime}\right) \cap R^{G}=\sigma\left(\mathfrak{q}^{\prime}\right) \cap \sigma\left(R^{G}\right)=$ $\sigma\left(\mathfrak{q}^{\prime} \cap R^{G}\right)=\sigma(\mathfrak{p})=\mathfrak{p}$, corollary 5.9 in [1] gives us that actually $\mathfrak{q}=\sigma\left(\mathfrak{q}^{\prime}\right)$. We have thus shown that G acts transitively on P; since G is finite, P must then be also finite.

References

[1] M.Atiyah, Y.McDonald (1994), Introduction to commutative algebra, AddisonWesley Publishing Company.

