D-MATH Commutative Algebra HS 2018

Prof. Paul Nelson .
Solutions Sheet 7

PRIMARY DECOMPOSITION AND INTEGRALITY

Let R be a commutative ring, k an algebraically closed field.

1. Let X be a topological space.

(a) Assume that X is irreducible. Show that any non-empty open subset O C X
is dense in X and an irreducible topological space when endowed with the
subspace topology.

(b) Assume that Y C X is irreducible as a subspace. Show that the closure Y in
X is also irreducible.

(c) Show that any irreducible subspace of X is contained in a maximal irreducible
subspace.

(d) Prove that the maximal irreducible subspaces are closed and cover X. They
are called the irreducible components of X. What are the irreducible compo-
nents of a Hausdorff space?

(e) Let X = Spec(R), where R is a commutative ring. Prove that the irreducible
components of X are the closed sets V(p) = {p’ € Spec(R) : p’ D p}, where
p is a minimal prime ideal of R.

Solution.

(a) Let O C X be a non-empty open subset. Then we may write X = OU(X \.0)
as the union of two closed sets. Since X is irreducible, at least one of them
has to be the whole space X. This cannot be the case for X ~ O because O
is assumed to be non-empty. Therefore, O = X and thus O is dense.

Assume now that O = (ONF;)U(ONF,) for some closed subsets Fy, Fy C X.
This in particular gives O C FyUF, hence X = (F;UF3)U(X N\ O), where all
elements appearing in this union are closed. Since X ~ O is a proper closed
subset, irreducibility forces X = F; U F3, which in turn gives that either
Fy = X or F5, = X. As a consequence, either O = ON F; or O = O N Fy,
which yields the desired irreducibility.

(b) Let Y C X be irreducible as a subspace. Assume Y = F;UF, for some closed
subsets Fi, F» C X. Then Y = (Y N Fy) U (Y N Fy), which by irreducibility
implies that one of them, say Y N F}, is equal to Y. This is equivalent to
say that Y C Fy, but as F is closed, this shows also that Y C F, yielding
Y = F;. The proof is concluded.



(c)

Let Y C X be irreducible. By Zorn’s lemma, it suffices to prove that the
non-empty, partially ordered set P = {Y’ C X irreducible : Y C Y'} is
inductive, i.e. that any totally ordered subset S C P admits an upper bound.
Write S = {Ya }aca. If we show that Y = Uaea Ya is irreducible, we have the
desired upper bound. Assume Y = (Y NF,)U(Y NE,) for some closed subsets
Fy, F5 C X. Then, by irreducibility of every Y,, we have that Y, C F;_, with
i € {1,2}, for all &« € A. Since S is totally ordered, we can actually choose a
common 1, for every «, showing that Y C F,, for a certain iy € {1,2}. This
achieves the result.

Let Y be a maximal irreducible subspace of X. By (b), the closure Y is also

irreducible. Maximality gives Y =Y, hence Y is closed.

Points are clearly irreducible subspaces; hence any point is contained in a
maximal irreducible subspace by the previous point, which means that max-
imal irreducible subspaces cover X.

Now assume that X is a Hausdorff space. We claim that any subset consisting
of more than one point is not irreducible, which is equivalent to say that the
irreducible components of X are points. Since any subspace of a Hausdorff
space is Hausdorff, it suffices to prove that an irreducible Hausdorff space X’
is a singleton. Any non-empty open subset O C X' is dense, hence it intersect
any other non-empty open subset O’ C X. If there were two distinct point
x # y € X, this would contradict the fact that they admit two disjoint
neighborhoods.

Let X = Spec(R). Let us first prove that the irreducible closed subsets of
X are the sets V(p), where p is a prime ideal. Now V(p) = {p}, hence it
is irreducible, being the closure of a singleton. On the other hand, if a is a
radical ideal which is not prime, then there are a,b € R~ a such that ab € a,
thus V(a) = V(a + (a)) UV (a+ (b)), showing that V(a) is not irreducible.
Now clearly minimal primes have to correspond to maximal irreducible sub-
spaces, since the correspondence p — V (p) is inclusion-reversing.

2. Let R be a commutative ring, and denote by R[X] the ring of polynomials in
one indeterminate over R. For any ideal a C R, denote by a[X] the set of all
polynomials in R[X] with coefficients in a.

(a)
(b)
(c)
(d)

(e)

Prove that a[X] is the extension of the ideal a in R[X].
Prove that, if p is a prime ideal in R, then p[X] is a prime ideal in R[X].
If q is a p-primary ideal in R, then show that q[X] is p-primary in R[X].

If a =), ¢; is a minimal primary decomposition of a in R, then show that
a[X] =, 9:[X] is a minimal primary decomposition of a[X] in R[X].

Prove that, if p is a minimal prime ideal of a in R, then p[X] is a minimal
prime ideal of a[X] in R[X].



Solution.

(a) It suffices to remark that a[X] is an ideal (which is immediate to check), since
obviously a[X] C a“.

(b) Assume p is a prime ideal in R. The ideal p[X] is the kernel of the canonical
surjection 7: R[X] — (R/p)[X], hence R[X|/p[X] ~ (R/p)[X], which is an
integral domain since R/p is. Thus p[X] is a prime ideal.

(c) Let g be a p-primary ideal in R. We may write q[X] = q+ q - (z), and the
same for p[X]. We now compute the radical of q[X]: we have

rad(q[X]) = rad(rad(q) + rad(q - ())) = rad(p + rad(q) Nrad((z)))
=rad(p +p - (z)) = rad(p[X > p[X].

It now suffices to prove that q[X] is primary. As before, the quotient R[X]/q[X]
is isomorphic to (R/q)[X]. Since q is primary in R, every zerodivisor in R/q
is nilpotent. Suppose

ZbXZ € (R/q)[X]

is a zerodivisor. Then, by an exercise of the first sheet, there exists a € R/q
such that a - f(X) = 0. This implies that any b; is a zerodivisor, hence
nilpotent, in R/q. By the same exercise, we conclude that f(X) is nilpotent.

(d) Let f(X) =73 ",b;X" be a polynomial in R[X]. Then
f(X)eaX]<=becaVi<b cq;Vi,j<=Vjf(X)eq[X],

so that a[X] = (j_, q;[X], as desired. By the previous point, each q;[X]
is primary, so we have indeed a primary decomposition. Irredundancy of
the decomposition follows immediately from the analogous property of the
decomposition of a and the fact that (1, ; q:[X] = (,; 9:)[X] for all j =
1,...n.

(e) Point (b) gives us that p[X] is a prime ideal containing a[X]. Assume now
that q € Spec(R[X]) is such that a[X] C q C p[X]; taking contractions, we
have a C gN R C p, with g N R prime in R. By minimality of p over a, this
forces N R = p, which in turn implies q = p[X]. Therefore, p[X] is minimal
over a[X].

3. The purpose of this exercise is to prove the Krull intersection theorem: let R be
a noetherian ring, a C R an ideal, and denote by b the intersection of all powers
a”,n > 1. Then:

e ba=b;



e b(1 —a) = (0) for some element a € a;

e if R is a domain and a is a proper ideal, then b = (0).

(a) Prove the following preliminary result: if R is a noetherian ring and I C R
is an ideal, then (rad(I))™ C I for some positive integer n.

(b) Use the previous point to prove the first assertion of Krull’s intersection
theorem.

(Hint: clearly the non-trivial inclusion is b C ba. Prove that b C q whenever
q s a primary ideal containing ba and deduce the result by means of the
primary decomposition theorem)

(¢) You may admit the following result: if M is a finitely generated R-module,
and I C R is an ideal such that IM = M, then M is annihilated by an
element of the form 1 — a, with a € I.

Using this, prove the last two assertions of Krull’s intersection theorem.

Solution.

(a) The ideal rad([) is generated by finitely many elements zi,...,z,; for any
i = 1,...r, there exists an integer m; > 1 such that z;" € I. Using the

multinomial theorem, it is easy to verify that any product of n elements of
rad(]), where n =), m,, lies in I, so that (rad(/))" C I.

(b) The inclusion b D ba follows from the fact that b is an ideal. Since R is
noetherian, the ideal ba is decomposable, hence it suffices to prove that b C g
whenever ¢ is a primary ideal containing ba. For the purpose of contradiction,
assume that b is not contained is some primary ideal q such that q D ba. Pick
an element = € b \ q; then za € ba C q for all @ € a. Primality of q forces
a C rad(q). By the previous point, a” C q for some integer n > 1, which
yields b C a™ C q, contradiction.

(c) The ideal b is a finitely generated R-module (since R is noetherian). The
previous point gives us ba = b, thus, by the admitted result, b is annihilated
by an element of the form 1 —a, with a € a. This proves the second assertion
of the theorem.

If a is proper, then 1 ¢ a, hence 1 —a # 0 for all a € a. Since R is a domain,
the second point of the theorem implies that b = (0).

4. Let ¢: R — S be an integral homomorphism of rings. Show that the induced
continuous map ¢*: Spec(S) — Spec(R) is closed, namely that it maps closed sets
to closed sets.

Solution. By definition of an integral homomorphism, S in integral over the subring
S" = p(R). We write ¢ as the composition of ¢': R — S’ and the inclusion
i: S"— S. It suffices to prove that both (¢')* and i* are closed maps.



By an exercise in the previous sheets, (¢’)* induces an homeomorphism between
Spec(S”) and V' (ker ¢) C Spec(R) (since ¢’ is surjective). V' (ker ) being closed in
Spec(R), (¢')* maps closed sets of Spec(S’) to closed sets of Spec(R).

It remains to prove that i* is a closed map. Let K C Spec(S) be closed, which
means that there exists a radical ideal b C S such that K = V/(b). We claim that
i*(K)=V(bNY’), so that in particular it is closed in Spec(S’). If q¢ D b is prime
in S, then qN S’ D bN.S’, thus i*(K) Cc V(bNS’).

Now let p D bNS’, and denote by p its image in S’ /bN.S” under the projection map.
The induced ting homomorphism 7: S'/S"Nb — S/b is integral, so by theorem
5.10 in [1] there exists q € Spec(S/b) such that n*(g) = p. The conclusion is
achieved recalling that there are canonical homeomorphisms Spec(S/b) ~ V(b)
and Spec(S’/bNS") ~V(bNS").

. Let R be a subring of a ring S such that S is integral over R, and let ¢: R — )
be a ring homomorphism of A into an algebraically closed field 2. Show that ¢
admits an extension to a ring homomorphism ®: S — €.

(Hint: use theorem 5.10 in [1])

Solution. ) is an integral domain, hence ¢(R) is a domain as well. This implies
that p = kerp is a prime ideal in R. By theorem 5.10 in [1], there is a prime
ideal ¢ C S such that ¢ N R = p. Then S/q is integral over R/p; therefore, it is
sufficient to prove the result when R and S are integral domains and ¢: R — ()
is an injective map.

Apply Zorn’s lemma to show that there is a maximal extension ®: .S” — Q of ¢ to
a subring R C S” C S. Our aim is to show that S’ = S. By contradiction, assume
there exists x € S~ 5. Since x is integral over R, it is a fortior: integral over
S’ let f(X) € S'[X] be a monic polynomial such that f(z) = 0. Let f(X) be the
canonical image of f(X) in 2(X). The composed map

S'1X] = QX] - QX)/(F(X))

factors through an injection S'[x] ~ S'[X/(f(X)) — Q[X]/(f(X)), which clearly
extends ®. Now € is algebraically closed, hence Q[X]/(f(X)) ~ Q, being an
algebraic extension of 2. This contradicts maximality of S’.

. Let G be a finite group of automorphisms of a ring R, and let R denote the
subset of G-invariant elements, i.e. RY = {z € R: o(x) = z for all 0 € G}.

(a) Prove that R is a subring of R and that R is integral over R®.

(b) Suppose S C R is a multiplicatively closed subset such that ¢(S) C S for all
o € G, and denote by S¢ = SN R®. Show that the action of G on R extends
to an action on R[S™!], and prove that

RE[(S9) 7" = (R[ST)“ .

b}



(c)

Let p be a prime ideal of RY, and let P the set of prime ideals of R whose
contraction is p. Show that G acts transitively on P and deduce that P is a
finite set.

Solution.

(a)

The fact that RY is a subring of R is clear since each ¢ € @ is a ring
automorphism. Let x € R, and consider the monic polynomial

F(T) = 1](T —o(x)) € RIT] .

oeG

It is clear that x is a root of f; moreover, for each oy € G,

oo(f(1) = [[(T = oo(o(2))) = [ (T —7(x)) = F(T)

ceG TEG

since composition with oy induces a permutation of G. We deduce that all
the coefficients of f(T) are G-invariant, namely f(T') € RY(T). Thus, x is
integral over RC.

We need to extend each o € G to an automorphism & of R[S™!]. The only
possible way to do this is to define 7(zs™') = o(x)o(s)"! for all element zs™*
of R[S™!]. This is well defined as a map from R[S™!] to itself, as S is invari-
ant under G, and it is immediate to check that it is a ring homomorphism
extending o to R[S™']. Since we can likewise construct o—1, and since obvi-
ously c-log =0"loo =idg = idgps-1), we get that & is an automorphism
of R[S]. In this way, we have extended the action of G on R to an action on
R[S71].

The canonical ring homomorphism RY < R — R[S™!] factors through a
morphism y: RY — (R[S7!])Y; each element of S¢ gets mapped to an in-
vertible element of (R[S™!])¢ by x, thus the universal property of localization
gives the existence of a ring map y: RY[(S%)~!] — (R[S™1])¥. We claim that
X is bijective, so that we get the desired isomorphism.

First, assume zs~! = 0 in (R[S7!])¥. Then, there exists y € S such that
yr = 0. Taking y' = [[,co(y), we also get y'z = 0. This means however
that zs~! = 0 already in R%[(S%)~"]; thus, X is bijective.

If xs7! is an arbitrary element of R[S™!]“, then consider s’ = [Lecefian
1

Since both xs™* and ss’ are G-invariant, then so is their product zs’. Hene,
for any 0 € G, there exists t, € S such that t,xs’ = t,0(xs’). Define
t =[LeamLeqto)- We have tas’ € RE, thus zs™! = (ts'z)(ts's) ™", with
the numerator belonging to R“. The proof is concluded.

Let g, q’ be elements of P. If z € q, then [[, .07 (z) € RNg = p. Since also
p=RNq, weget [[ .o ' (z) € g'. Primality of ' implies that there exists



some element o € G such that y = o7 !(z) € q'. Hence, z = o(y) € o(q). As
x was arbitrary in q, we deduce that q C |J,., o(q’). Primality forces again
q C o(q’). Now the fact that N R¢ = p and o(q') N RY = o(q') No(R") =
o(q’ N RY) = o(p) = p, corollary 5.9 in [1] gives us that actually q = o(q’).
We have thus shown that G acts transitively on P; since G is finite, P must
then be also finite.
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