Solutions Sheet 9

INTEGRALITY, JACOBSON RINGS AND KRULL TOPOLOGY

Let R be a commutative ring, k an algebraically closed field.

1. let R, S be commutative rings. A ring homomorphism $f: R \to S$ is said to have the *going-up property* if the conclusion of the going-up theorem 5.11 in [1] holds for S and its subring f(R).

Let $f^* \colon \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ be the mapping associated with f.

Consider the following three statements:

- (a) f^* is a closed mapping;
- (b) f has the going-up property;
- (c) let \mathfrak{q} be any prime ideal of S and \mathfrak{p} the contraction of \mathfrak{q} in R. Then $f^*: \operatorname{Spec}(S/\mathfrak{q}) \to \operatorname{Spec}(R/\mathfrak{p})$ is surjective.

Prove that (a) implies (b), and that (b) is equivalent to (c).

Solution. The map f factors as $f = i \circ p$, where p is surjective and $i: f(R) \to S$ is the canonical inclusion. We know for previous exercise sheets that the induced map p^* maps $\operatorname{Spec}(f(R))$ homeomorphically onto the closed subset $V(\ker f) \subset \operatorname{Spec}(R)$. For any $\mathfrak{p} \in V(\ker f)$, surjectivity of p implies that $p(R)/p(\mathfrak{p}) \simeq R/\mathfrak{p}$, so that fwill satisfy any of the three properties if and only if i does. We can thus assume without loss of generality that $f: R \hookrightarrow S$ is an inclusion.

It is also straightforward that, under the assumption that f is an inclusion, the going-up property is equivalent to the following: for any $\mathfrak{p} \in \operatorname{Spec}(R)$ and any $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{p} = \mathfrak{q} \cap R$, the restriction map $f^*|_{V(\mathfrak{q})} \colon V(\mathfrak{q}) \to V(\mathfrak{p})$ is surjective.

 $[(a) \Rightarrow (b)]$ Assume f^* is a closed mapping, and let $\mathfrak{p} \in \operatorname{Spec}(R)$, $\mathfrak{q} \in \operatorname{Spec}(S)$ such that $\mathfrak{q} \cap R = \mathfrak{p}$. Since $V(\mathfrak{q})$ is closed in $\operatorname{Spec}(S)$, by assumption $f^*(V(\mathfrak{q}))$ is closed in $\operatorname{Spec}(R)$ and contains \mathfrak{p} , so that $\overline{\mathfrak{p}} \subset f^*(V(\mathfrak{q}))$. Since clearly $\overline{\mathfrak{p}} = V(\mathfrak{p})$, we deduce that $f^*|_{V(\mathfrak{q})} \colon V(\mathfrak{q}) \to V(\mathfrak{p})$ is surjective.

 $[(b) \Leftrightarrow (c)]$ Resorting to an exercise of previous sheets, we may identify the map $f^*|_{V(\mathfrak{q})} \colon V(\mathfrak{q}) \to V(\mathfrak{p})$ with the map $\bar{f}^* \colon \operatorname{Spec}(S/\mathfrak{q}) \to \operatorname{Spec}(R/\mathfrak{p})$ induced by the map $\bar{f} \colon R/\mathfrak{p} \to S/\mathfrak{q}$. It is then obvious that the two properties are equivalent.

- 2. The aim of this exercise is to prove Noether's normalization lemma: let k be an infinite field, $A \neq 0$ a finitely generated k-algebra. Then there exist elements $y_1, \ldots, y_r \in A$ which are algebraically independent over k and such that A is integral over $k[y_1, \ldots, y_r]$.
 - (a) Prove that there are generators x_1, \ldots, x_n of A as a k-algebra such that x_1, \ldots, x_r are algebraically independent over k and each of x_{r+1}, \ldots, x_n is algebraic over $k[x_1, \ldots, x_r]$, for some $0 \leq r \leq n$.
 - (b) Argue by induction on n (if n = r there is nothing to do). Suppose n > r and the result true for n 1 generators.
 - i. Show that there exists a polynomial $f \neq 0$ in *n* variables such that $f(x_1, \ldots, x_{n-1}, x_n) = 0$.
 - ii. Let F be the homogeneous part of highest degree of f. Use the assumption that k is infinite to show that there exist $\lambda_1, \ldots, \lambda_{n-1} \in k$ with $F(\lambda_1, \ldots, \lambda_{n-1}, 1) \neq 0$.
 - iii. Set $x'_i = x_i \lambda_i x_n$ for all $1 \le i \le n 1$. Prove that x_n is integral over the ring $A' = k[x'_1, \dots, x'_{n-1}]$, and conclude that A is integral over A'.
 - (c) Apply the inductive hypothesis to conclude the proof.

Solution.

- (a) Let x_1, \ldots, x_n be generators of A as a k-algebra. Define $S \subset \{x_1, \ldots, x_n\}$ to be a maximal subset of elements which are algebraically independent over k(no Zorn's lemma needed, we are working over a finite set). We may renumber the x_i so that $S = \{x_1, \ldots, x_r\}$ for some $0 \leq r \leq n$ (adopting the convention that $S = \emptyset$ if r = 0). Then each of the x_j for j > r has to be algebraic over $k[x_1, \ldots, x_r]$ (as in the proof if the existence of a transcendence basis), since otherwise the subset $\{x_1, \ldots, x_r, x_j\}$ would be algebraically independent over k, contradicting the maximality of S.
- (b) Suppose n > r and that the result is true for n 1 generators.
 - i. Since the element x_n is algebraic over $k[x_1, \ldots, x_{n-1}]$ there exists a polynomial $0 \neq f' \in k[x_1, \ldots, x_{n-1}][X]$ such that $f'(x_n) = 0$. We may clearly regard f' as a polynomial with coefficients in k and indeterminates X_1, \ldots, X_n , so that the conclusion is reached.
 - ii. Suppose that such $\lambda_i, 1 \leq i \leq n-1$, don't exist. Then we have, by homogeneity of F, $F(X_1, \ldots, X_n) = X_n^{\deg F} F(X_1, \ldots, X_{n-1}, 1)$; now, since k is an infinite field, the polynomial $F(X_1, \ldots, X_{n-1}, 1)$ vanishes in the ring $k[X_1, \ldots, X_{n-1}]$ (otherwise the λ_i would exist). Hence we deduce F = 0, contradicting the fact that $f \neq 0$.

iii. Define $x'_i = x_i - \lambda_i x_n$ for all $1 \leq i \leq n - 1$. We may write

$$F(x_1, \dots, x_n) = \sum_I a_I \prod_{j=1}^n x_j^{i_j} = \sum_I a_I x_n^{i_n} \prod_{j=1}^{n-1} (x'_j + \lambda_j x_n)^{i_j} .$$

The coefficient of $x_n^{\deg F}$ in $F \in k[x'_1, \ldots, x'_{n-1}, x_n]$ is thus

$$c = \sum_{I} a_{I} \lambda_{1}^{i_{1}} \cdots \lambda_{n-1}^{i_{n-1}} = F(\lambda_{1}, \dots, \lambda_{n-1}, 1) \neq 0 ,$$

so that the equation $c^{-1}f(x_1, \ldots, x_{n-1}, x_n) = 0$ is monic when written in $A'[x_n]$. As a consequence, x_n is integral over A'. This implies that $A = k[x_1, \ldots, x_n]$ is integral over A'. Using the induction hypothesis, A'is integral over some $k[y_1, \ldots, y_r]$, with y_1, \ldots, y_r algebraically independent over k. By transitivity of integral dependence, A is integral over $k[y_1, \ldots, y_r]$.

- 3. Let k be an algebraically closed field.
 - (a) Prove that k is infinite.
 - (b) Let X be an affine algebraic variety in k^n with coordinate ring $A \neq 0$. Use the outlined proof of Noether's normalization lemma to prove that there exists a linear subspace L of dimension r in k^n and a linear mapping $k^n \to L$ which maps X onto L.

Solution.

- (a) Assume that k is a finite field, say $k = \{a_1, \ldots, a_n\}$. Then it is obvious that the non-constant polynomial $f(X) = \prod_{i=1}^n (X a_i) + 1 \in k[X]$ has no roots over k. Thus k is not algebraically closed.
- (b) Let X be an affine variety in k^n defined by an ideal I(X) such that its coordinate ring $A = k[X_1, \ldots, X_n]/I(X)$ is non-zero. A is obviously a finitely generated k-algebra. Since k is infinite by the previous point, Noether's normalization lemma applies and gives elements $y_1, \ldots, y_r \in A$ which are algebraically independent over k and such that A is integral over $k[y_1, \ldots, y_r]$. The proof given in the previous exercise shows that the y_i may be choosen to be linear combinations of the x_1, \ldots, x_n (where here x_i denotes the projection of X_i onto A).

Denote by $\iota: X \to k^n$ the canonical inclusion; we want to find a linear subspace L of dimension r in k^n and a linear map $\varphi: k^n \to L$ such that $\varphi \circ \iota$ is surjective. Transposing this condition in the language of the associated coordinate rings, this is equivalent to find linear polynomials $f_1, \ldots, f_{n-r} \in k[X_1, \ldots, X_n]$ and a "linear" map $\varphi^*: k[X_1, \ldots, X_n]/(f_1, \ldots, f_{n-r}) \to k[X_1, \ldots, X_n]$ such that the map $\pi \circ \varphi^* \colon k[X_1, \ldots, X_n]/(f_1, \ldots, f_{n-r}) \to A$ is injective, where $\pi \colon k[X_1, \ldots, X_n] \to A$ denotes the canonical projection. We are thus lead to find a linear function $\psi \colon k[X_1, \ldots, X_n] \to A$ whose kernel is an ideal generated ny n-r linear polynomials f_1, \ldots, f_{n-r} . It suffices to express the $X_j, j = 1, \ldots, n$ (actually an appropriate subset of them) linearly as functions of the $y_i, 1 \leq i \leq r$, and send each X_j to the thus-obtained linear combination of the y_i .

- 4. Let R be a ring. Show that the following are equivalent:
 - (a) R is a Jacobson ring;
 - (b) for any ring S and any surjective ring homomorphism $f: R \to S$, the nilradical ideal of S coincides with its Jacobson ideal;
 - (c) every prime ideal in R which is not maximal is equal to the intersection of the prime ideals which contain it strictly.

(Hint: for the implication $(c) \Rightarrow (a)$ argue as follows. Assume (a) is false, then there is a prime ideal which is not the intersection of maximal ideals. Passing to the quotient ring, we may assume that R is a domain with non-zero Jacobson ideal. Pick a non-zero f in the Jacobson ideal, then $R_f \neq 0$, thus R_f has a maximal ideal whose contraction in R is a prime ideal not containing f, and which is maximal with respect to this property.)

Solution. $[(a) \Rightarrow (b)]$ Let $\mathfrak{a} \subset R$ be an ideal, and denote by $M(\mathfrak{a})$ the set of maximal ideals of R containing \mathfrak{a} . By assumption the radical ideal $\operatorname{rad}(\mathfrak{a})$ is the intersection of all elements of $M(\mathfrak{a})$. This clearly implies that, in the quotient R/\mathfrak{a} , the Jacobson and the nilradical ideal coincide. Since any homomorphic image of R is isomorphic to R/\mathfrak{a} for some ideal $\mathfrak{a} \subset R$ by the first isomorphism theorem for rings, the conclusion is achieved.

 $[(b) \Rightarrow (c)]$ Let $\mathfrak{p} \in \operatorname{Spec}(R)$ be not maximal. Then the trivial ideal (0) is not maximal in the quotient A/\mathfrak{p} . Since A/\mathfrak{p} is an integral domain, its nilradical vanishes; by assumption, the nilradical coincides with the Jacobson radical, which therefore vanishes as well. Going back to the ring R and the ideal \mathfrak{p} , this implies precisely that \mathfrak{p} is the intersection of all prime ideals containing it strictly.

 $[(c) \Rightarrow (a)]$ We follow the given hint, thus in particular we may assume that R is a domain with non-zero Jacobson ideal. Choose a non-zero $f \in \text{Jac}(R)$, so that the localization $R_f \neq 0$. Now R_f contains a maximal ideal \mathfrak{q} , whose contraction \mathfrak{q}' is a prime ideal which is maximal with respect to the property of not meeting S_f . By assumption \mathfrak{q}' is an intersection of prime ideals containing f, which gives the desired contradiction.

5. Let G be a group (not necessarily abelian), and let \mathcal{F} be a filter on G satisfying the following properties:

- for any $V \in \mathcal{F}$ there exists $U \in \mathcal{F}$ such that $UU^{-1} \subset V$, where $UU^{-1} = \{xy^{-1} : x, y \in U\};$
- for any $V \in \mathcal{F}$ and any $g \in G$, $gVg^{-1} \in \mathcal{F}$, where $gVg^{-1} = \{gxg^{-1} : x \in V\}$.

Prove that there exists a unique topology τ on G making G into a topological group (i.e. multiplication and inverse are continuous maps with respect to τ) and for which \mathcal{F} is the filter of neighborhoods of the identity element e_G .

Solution. We first show uniqueness. If τ is a topology on G making it into a topological group, then for any fixed $a \in G$ the map $G \ni g \mapsto ag$ is an homeomorphism. Thus, the filter of neighborhoods \mathcal{F}_a of a is simply the a-translated of \mathcal{F} , assuming that τ induces the filter \mathcal{F} as filter of neighborhoods of the identity. Therefore, \mathcal{F} uniquely determines the filter of neighborhoods of every point, and thus the topology (two topologies on a set having the same filters of neighborhoods at every point must coincide).

Existence is more involved. The first property clearly implies that $e_G \in V$ for any $V \in \mathcal{F}$. Now let $g \in G$, and define $\mathcal{F}_g = \{gV : V \in \mathcal{F}\}$, the *g*-translated of \mathcal{F} . It is immediate that \mathcal{F}_g is a filter on G all of whose elements contain the point g. We now claim that, for any gV in \mathcal{F}_g , there exists $gW \in \mathcal{F}_g$ such that $gV \in \mathcal{F}_h$ for all $h \in gW$. This, by a general result in general topology, implies that there exists a topology τ for which \mathcal{F}_g is the filter of neighborhoods at g, for any $g \in G$. The first property of \mathcal{F} implies that, given $V \in \mathcal{F}$, there exists $W \in \mathcal{F}$ such that $WW \subset V$; indeed, take $U \in \mathcal{F}$ such that $UU^{-1} \subset V$. Then any $W \in \mathcal{F}$ with $W \subset U \cap U^{-1}$ will verify the property. We now claim that, with this choice of W, we have that $gV \in \mathcal{F}_h$ for all $h \in gW$. In fact, if $h \in gW$, then $hW \in \mathcal{F}_h$ and $hW \subset gWW \subset gV$, so that $gV \in \mathcal{F}_h$.

We now prove that the group operations are continuous with respect to τ . It clearly suffices to show that the map $G \times G \ni (g, h) \mapsto gh^{-1}$ is continuous. Fix $(g_0, h_0) \in G \times G$, and let $g_0 h_0^{-1} V$, with $V \in \mathcal{F}$, be an arbitrary neighborhood of $g_0 h_0^{-1}$. By the assumption on \mathcal{F} , there exists $U \in \mathcal{F}$ such that $UU^{-1} \subset h_0^{-1} V h_0$. Thus $(g_0 h_0^{-1})^{-1} [g_0 U(h_0 U)^{-1}] = h_0 g_0^{-1} g_0 U U^{-1} h_0^{-1} = h_0 U U^{-1} h_0^{-1} \subset h_0 (h_0^{-1} V h_0) h_0^{-1} = V$, which means that $g_0 U(h_0 U)^{-1} \subset g_0 h_0^{-1} V$, showing the desired continuity at the point $(g_0, h_0) \in G \times G$.

- 6. Let G be an abelian group, and let $G = G_0 \supset G_1 \supset \cdots$ be a descending filtration of subgroups. Consider the set $\mathcal{F} = \{V \subset G : G_n \subset V \text{ for some } n \in \mathbb{N}\}$
 - (a) Prove that \mathcal{F} satisfies the conditions in the previous exercise. The resulting topology on G is called the *Krull topology* (determined by the given filtration).
 - (b) Show that if $H \in \mathcal{F}$ is a subgroup, then it is open for the Krull topoogy.
 - (c) Assume that G = R is a commutative ring, and suppose the G_i are ideals of R. Prove that ring multiplication is continuous with respect to the Krull topology (so that R becomes a *topological ring*).

Solution.

- (a) We first show that \mathcal{F} is a filter. The set \mathcal{F} is non-empty by definition. Moreover, each $V \in \mathcal{F}$ is non-empty because it contains $G_n \neq \emptyset$ for some $n \in \mathbb{N}$. Clearly, if $V \in \mathcal{F}$ and $W \supset V$, then $W \in \mathcal{F}$ as well. Finally, if $V, W \in \mathcal{F}$, pick integers n, m such that $G_n \subset V$ and $G_m \subset W$; then $G_{max\{n,m\}} \subset V \cap W$, thus $V \cap W \in \mathcal{F}$. Hence \mathcal{F} is a filter. The second property is obviously satisfied since G is abelian. For the first one, simply notice that $G_n G_n^{-1} = G_n$ for all n, since G_n is a subgroup. Thus, \mathcal{F} verifies all the assumptions of the previous exercise; as a consequence, there is a well-defined group topology on G for which \mathcal{F} is the filter of neighborhoods of the identity.
- (b) Let $H \in \mathcal{F}$ be a subgroup, so that in particular $G_n \subset H$ for some $n \in \mathcal{N}$. For any point $h \in H$, the set hG_n is a neighborhood of h; moreover, $hG_n \subset H$ since H is a subgroup, so that H is also a neighborhood of h. Thus H is a neighborhood of any of its elements, hence it is open.
- (c) Fix $x, y \in R$, and let xyG_i be an arbitrary basis neighborhood of the point xy for the Krull topology. Then $(xG_i)(yG_i) = xyG_iG_i \subset xyG_i$, as multiplication is commutative and G_i is an ideal. Thus, $xG_i \times yG_i$ is a neighborhood of $(x, y) \in R \times R$ for the product topology which is mapped by the multiplication operation inside xyG_i . This shows continuity of multiplication at an arbitrary point $(x, y) \in R \times R$.

References

- [1] M.Atiyah, Y.McDonald (1994), *Introduction to commutative algebra*, Addison-Wesley Publishing Company.
- [2] D.Eisenbud (2004), Commutative Algebra with a View towards Algebraic Geometry, Springer.