D-MATH Commutative Algebra HS 2018
Prof. Paul Nelson .
Solutions Sheet 9

INTEGRALITY, JACOBSON RINGS AND KRULL TOPOLOGY

Let R be a commutative ring, k an algebraically closed field.

1. let R, S be commutative rings. A ring homomorphism f: R — S is said to have
the going-up property if the conclusion of the going-up theorem 5.11 in [1] holds
for S and its subring f(R).

Let f*: Spec(S) — Spec(R) be the mapping associated with f.

Consider the following three statements:

(a) f*is a closed mapping;
(b) f has the going-up property:;

(c) let q be any prime ideal of S and p the contraction of q in R. Then
f*: Spec(S/q) — Spec(R/p) is surjective.

Prove that (a) implies (b), and that (b) is equivalent to (c).

Solution. The map f factors as f = iop, where p is surjective and i: f(R) — S is
the canonical inclusion. We know for previous exercise sheets that the induced map
p* maps Spec(f(R)) homeomorphically onto the closed subset V (ker f) C Spec(R).
For any p € V(ker f), surjectivity of p implies that p(R)/p(p) ~ R/p, so that f
will satisfy any of the three properties if and only if ¢ does. We can thus assume
without loss of generality that f: R < S is an inclusion.

It is also straightforward that, under the assumption that f is an inclusion, the
going-up property is equivalent to the following: for any p € Spec(R) and any
q € Spec(S) such that p = q N R, the restriction map f*[y(): V(q) — V(p) is
surjective.

[(a) = (b)] Assume f* is a closed mapping, and let p € Spec(R), q € Spec(S)
such that ¢ N R = p. Since V(q) is closed in Spec(S), by assumption f*(V(q)) is
closed in Spec(R) and contains p, so that p C f*(V(q)). Since clearly p = V(p),
we deduce that f*|yq: V(q) = V(p) is surjective.

[(b) < (c)] Resorting to an exercise of previous sheets, we may identify the map
flv: V(a) = V(p) with the map f*: Spec(S/q) — Spec(R/p) induced by the
map f: R/p — S/q. It is then obvious that the two properties are equivalent.



2. The aim of this exercise is to prove Noether’s normalization lemma: let k be an
infinite field, A # 0 a finitely generated k-algebra. Then there exist elements
Y1,--.,Y- € A which are algebraically independent over k and such that A is

integral over k[yy,...,y,].
(a) Prove that there are generators xi,...,x, of A as a k-algebra such that
x1,...,x, are algebraically independent over k and each of x,.1,...,x, is
algebraic over klzy, ..., x|, for some 0 < r < n.

(b) Argue by induction on n (if n = r there is nothing to do). Suppose n > r
and the result true for n — 1 generators.

1.

ii.

iii.

Show that there exists a polynomial f # 0 in n variables such that
fz1,. .. 201, 2,) = 0.

Let F' be the homogeneous part of highest degree of f. Use the assump-
tion that k is infinite to show that there exist Ai,...,\,_1 € k with
F(A, oo 1, 1) #0.

Set o} = x; — \jz,, for all 1 <@ < n— 1. Prove that z,, is integral over
the ring A’ = k[x},..., 2} 4], and conclude that A is integral over A’

(¢) Apply the inductive hypothesis to conclude the proof.

Solution.

(a) Let xy,...,x, be generators of A as a k-algebra. Define S C {xy,...,z,} to
be a maximal subset of elements which are algebraically independent over k
(no Zorn’s lemma needed, we are working over a finite set). We may renumber
the z; so that S = {x1,...,x,.} for some 0 < r < n (adopting the convention
that S = @ if r = 0). Then each of the x; for j > r has to be algebraic over
k[x1,...,z,] (as in the proof if the existence of a transcendence basis), since
otherwise the subset {z1,...,z,,z;} would be algebraically independent over
k, contradicting the maximality of S.

(b) Suppose n > r and that the result is true for n — 1 generators.

1.

ii.

Since the element x,, is algebraic over k[zy, ..., z, 1] there exists a poly-
nomial 0 # f' € klx1,...,2,-1][X] such that f'(z,) = 0. We may
clearly regard f’ as a polynomial with coefficients in k& and indetermi-
nates Xi,..., X, so that the conclusion is reached.

Suppose that such A\;,;1 <7 < n—1, don’t exist. Then we have, by ho-
mogeneity of F', F(Xy,...,X,) = X¥8'F(X,, ..., X,_1,1); now, since
k is an infinite field, the polynomial F'(Xj,..., X,,_1,1) vanishes in the
ring k[X,..., X,,—1] (otherwise the \; would exist). Hence we deduce
F =0, contradicting the fact that f # 0.



iii. Define 2} = x; — \jz,, for all 1 <@ < n — 1. We may write

n n—1
F(zy,...,2,) = Zal Hazzj = Z arrln H(:L‘; + X\jx,)5
T =l T j=1
The coefficient of x4 ¥ in F € k[z),..., 2! |, x,] is thus

c=Y aA AT =F(A, . A, 1) £0
I

so that the equation ¢~!f(xy,..., 2, 1,2,) = 0 is monic when written
in A'lx,]. As a consequence, x,, is integral over A’. This implies that
A = klzy,...,x,] is integral over A’. Using the induction hypothesis, A’
is integral over some klyi, ..., y,], with y1,...,y, algebraically indepen-
dent over k. By transitivity of integral dependence, A is integral over

k[yla s 7yr]'

3. Let k be an algebraically closed field.

(a)
(b)

Prove that k is infinite.

Let X be an affine algebraic variety in k™ with coordinate ring A # 0. Use the
outlined proof of Noether’s normalization lemma to prove that there exists a
linear subspace L of dimension r in £™ and a linear mapping k™ — L which
maps X onto L.

Solution.

(a)

(b)

Assume that k is a finite field, say k = {aq,...,a,}. Then it is obvious that
the non-constant polynomial f(X) = [[;_,(X —a;) + 1 € k[X] has no roots
over k. Thus k is not algebraically closed.

Let X be an affine variety in k™ defined by an ideal I(X) such that its
coordinate ring A = k[X7, ..., X,,]/I(X) is non-zero. A is obviously a finitely
generated k-algebra. Since k is infinite by the previous point, Noether’s
normalization lemma applies and gives elements yi,...,y, € A which are
algebraically independent over k and such that A is integral over k[yi, ..., y,].
The proof given in the previous exercise shows that the y; may be choosen to
be linear combinations of the xy, ..., x, (where here x; denotes the projection
of X; onto A).

Denote by ¢t: X — k™ the canonical inclusion; we want to find a linear sub-
space L of dimension r in k™ and a linear map ¢: k™ — L such that p o
is surjective. Transposing this condition in the language of the associated
coordinate rings, this is equivalent to find linear polynomials fi,..., f,_, €

k[Xi,...,X,] and a”linear” map ¢*: k[X1, ..., X,]/(f1,- -+, far) = K[ X1, ...

, X



such that the map mop*: k[X1,..., X,]/(f1,. .., fu—r) = Alsinjective, where
m: k[X1,...,X,] = A denotes the canonical projection. We are thus lead to
find a linear function ¥: k[Xy,...,X,] — A whose kernel is an ideal gen-
erated ny n — r linear polynomials fi,..., f,_.. It suffices to express the
X;,j = 1,...,n (actually an appropriate subset of them) linearly as func-
tions of the y;,1 < ¢ < r, and send each Xj to the thus-obtained linear

combination of the y;.
4. Let R be a ring. Show that the following are equivalent:

(a) R is a Jacobson ring;

(b) for any ring S and any surjective ring homomorphism f: R — S, the nilrad-
ical ideal of S coincides with its Jacobson ideal,;

(c) every prime ideal in R which is not maximal is equal to the intersection of
the prime ideals which contain it strictly.

(Hint: for the implication (c¢) = (a) arque as follows. Assume (a) is false, then
there is a prime ideal which is not the intersection of maximal ideals. Passing to
the quotient ring, we may assume that R is a domain with non-zero Jacobson ideal.
Pick a non-zero f in the Jacobson ideal, then Ry # 0, thus Ry has a mazimal ideal
whose contraction in R is a prime ideal not containing f, and which is maximal
with respect to this property.)

Solution. [(a) = (b)] Let a C R be an ideal, and denote by M(a) the set of
maximal ideals of R containing a. By assumption the radical ideal rad(a) is the
intersection of all elements of M (a). This clearly implies that, in the quotient R/a,
the Jacobson and the nilradical ideal coincide. Since any homomorphic image of
R is isomorphic to R/a for some ideal a C R by the first isomorphism theorem for
rings, the conclusion is achieved.

[(b) = (c)] Let p € Spec(R) be not maximal. Then the trivial ideal (0) is not
maximal in the quotient A/p. Since A/p is an integral domain, its nilradical
vanishes; by assumption, the nilradical coincides with the Jacobson radical, which
therefore vanishes as well. Going back to the ring R and the ideal p, this implies
precisely that p is the intersection of all prime ideals containing it strictly.

[(¢) = (a)] We follow the given hint, thus in particular we may assume that R is
a domain with non-zero Jacobson ideal. Choose a non-zero f € Jac(R), so that
the localization Ry # 0. Now Ry contains a maximal ideal ¢, whose contraction
q’ is a prime ideal which is maximal with respect to the property of not meeeting
S¢. By assumption ¢ is an intersection of prime ideals containing f, which gives
the desired contradiction.

5. Let G be a group (not necessarily abelian), and let F be a filter on G satisfying
the following properties:



e for any V € F there exists U € F such that UU™' C V, where UU ! =
{zy™' 2,y e Uk
e forany V € F and any g € G, gVg~! € F, where gVg~ ' = {gzg™' : 2 € V}.

Prove that there exists a unique topology 7 on G making G into a topological
group (i.e. multiplication and inverse are continuous maps with respect to 7) and
for which F is the filter of neighborhoods of the identity element e.

Solution. We first show uniqueness. If 7 is a topology on G making it into a
topological group, then for any fixed a € G the map G > g — ag is an homeo-
morphism. Thus, the filter of neighborhoods F, of a is simply the a-translated of
F, assuming that 7 induces the filter F as filter of neighborhoods of the identity.
Therefore, F uniquely determines the filter of neighborhoods of every point, and
thus the topology (two topologies on a set having the same filters of neighborhoods
at every point must coincide).

Existence is more involved. The first property clearly implies that e € V for any
V e F. Now let g € G, and define F, = {gV : V € F}, the g-translated of F.
It is immediate that F; is a filter on G all of whose elements contain the point g.
We now claim that, for any gV in F,, there exists g\WW € F, such that gV € F,
for all h € gW. This, by a general result in general topology, implies that there
exists a topology 7 for which F, is the filter of neighborhoods at g, for any g € G.
The first property of F implies that, given V € F, there exists W &€ F such that
WW C V; indeed, take U € F such that UU~' € V. Then any W € F with
W c UNU! will verify the property. We now claim that, with this choice of W,
we have that gV € Fj, for all h € gW. In fact, if h € gW, then hW € Fj, and
hW c gWW C gV, so that gV € Fy,.

We now prove that the group operations are continuous with respect to 7. It clearly
suffices to show that the map G x G 3 (g,h) — gh™! is continuous. Fix (g, ho) €
G x G, and let gohy'V, with V € F, be an arbitrary neighborhood of gohg*.
By the assumption on F, there exists U € F such that UU~' C hy'Vhy. Thus
(90hg ") HgoU (RoU) ™Y = hogy ' goUUthyt = hoUU thy' C ho(hg'Vho)hy' =V,
which means that goU(hoU)™' C gohy'V ,showing the desired continuity at the
point (go, ho) € G x G.

. Let G be an abelian group, and let G = Gg D G; D - -+ be a descending filtration
of subgroups. Consider the set F ={V C G : G,, C V for some n € N}

(a) Prove that F satisfies the conditions in the previous exercise. The resulting
topology on G is called the Krull topology (determined by the given filtration).
(b) Show that if H € F is a subgroup, then it is open for the Krull topoogy.

(c) Assume that G = R is a commutative ring, and suppose the G; are ideals
of R. Prove that ring multiplication is continuous with respect to the Krull
topology (so that R becomes a topological Ting).

b}



Solution.

(a) We first show that F is a filter. The set F is non-empty by definition.
Moreover, each V' € F is non-empty because it contains G, # & for some
n € N. Clearly, if V€ Fand W D V, then W € F as well. Finally,
if V.W € F, pick integers n,m such that G, € V and G,, C W; then
Gmazfnmy CV OW, thus VN W € F. Hence F is a filter.
The second property is obviously satisfied since G is abelian. For the first one,
simply notice that G,,G,,! = G,, for all n, since G,, is a subgroup. Thus, F
verifies all the assumptions of the previous exercise; as a consequence, there is
a well-defined group topology on G for which F is the filter of neighborhoods
of the identity.

(b) Let H € F be a subgroup, so that in particular G,, C H for some n € . For
any point h € H, the set hG,, is a neighborhood of h; moreover, hG, C H
since H is a subgroup, so that H is also a neighborhood of h. Thus H is a
neighborhood of any of its elements, hence it is open.

(c¢) Fix x,y € R, and let zyG; be an arbitrary basis neighborhood of the point xy
for the Krull topology. Then (xG;)(yG;) = xyG;G; C xyG;, as multiplication
is commutative and G; is an ideal. Thus, xG; x yG; is a neighborhood of
(x,y) € Rx R for the product topology which is mapped by the multiplication
operation inside xyG;. This shows continuity of multiplication at an arbitrary
point (z,y) € R x R.
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