
D-MATH Commutative Algebra HS 2018
Prof. Paul Nelson

Solutions Sheet 9

Integrality, Jacobson rings and Krull topology

Let R be a commutative ring, k an algebraically closed field.

1. let R, S be commutative rings. A ring homomorphism f : R → S is said to have
the going-up property if the conclusion of the going-up theorem 5.11 in [1] holds
for S and its subring f(R).

Let f ∗ : Spec(S)→ Spec(R) be the mapping associated with f .

Consider the following three statements:

(a) f ∗ is a closed mapping;

(b) f has the going-up property;

(c) let q be any prime ideal of S and p the contraction of q in R. Then
f ∗ : Spec(S/q)→ Spec(R/p) is surjective.

Prove that (a) implies (b), and that (b) is equivalent to (c).

Solution. The map f factors as f = i ◦ p, where p is surjective and i : f(R)→ S is
the canonical inclusion. We know for previous exercise sheets that the induced map
p∗ maps Spec(f(R)) homeomorphically onto the closed subset V (ker f) ⊂ Spec(R).
For any p ∈ V (ker f), surjectivity of p implies that p(R)/p(p) ' R/p, so that f
will satisfy any of the three properties if and only if i does. We can thus assume
without loss of generality that f : R ↪→ S is an inclusion.

It is also straightforward that, under the assumption that f is an inclusion, the
going-up property is equivalent to the following: for any p ∈ Spec(R) and any
q ∈ Spec(S) such that p = q ∩ R, the restriction map f ∗|V (q) : V (q) → V (p) is
surjective.

[(a) ⇒ (b)] Assume f ∗ is a closed mapping, and let p ∈ Spec(R), q ∈ Spec(S)
such that q ∩ R = p. Since V (q) is closed in Spec(S), by assumption f ∗(V (q)) is
closed in Spec(R) and contains p, so that p ⊂ f ∗(V (q)). Since clearly p = V (p),
we deduce that f ∗|V (q) : V (q)→ V (p) is surjective.

[(b) ⇔ (c)] Resorting to an exercise of previous sheets, we may identify the map
f ∗|V (q) : V (q) → V (p) with the map f̄ ∗ : Spec(S/q) → Spec(R/p) induced by the
map f̄ : R/p→ S/q. It is then obvious that the two properties are equivalent.
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2. The aim of this exercise is to prove Noether’s normalization lemma: let k be an
infinite field, A 6= 0 a finitely generated k-algebra. Then there exist elements
y1, . . . , yr ∈ A which are algebraically independent over k and such that A is
integral over k[y1, . . . , yr].

(a) Prove that there are generators x1, . . . , xn of A as a k-algebra such that
x1, . . . , xr are algebraically independent over k and each of xr+1, . . . , xn is
algebraic over k[x1, . . . , xr], for some 0 6 r 6 n.

(b) Argue by induction on n (if n = r there is nothing to do). Suppose n > r
and the result true for n− 1 generators.

i. Show that there exists a polynomial f 6= 0 in n variables such that
f(x1, . . . , xn−1, xn) = 0.

ii. Let F be the homogeneous part of highest degree of f . Use the assump-
tion that k is infinite to show that there exist λ1, . . . , λn−1 ∈ k with
F (λ1, . . . , λn−1, 1) 6= 0.

iii. Set x′i = xi − λixn for all 1 6 i 6 n − 1. Prove that xn is integral over
the ring A′ = k[x′1, . . . , x

′
n−1], and conclude that A is integral over A′.

(c) Apply the inductive hypothesis to conclude the proof.

Solution.

(a) Let x1, . . . , xn be generators of A as a k-algebra. Define S ⊂ {x1, . . . , xn} to
be a maximal subset of elements which are algebraically independent over k
(no Zorn’s lemma needed, we are working over a finite set). We may renumber
the xi so that S = {x1, . . . , xr} for some 0 6 r 6 n (adopting the convention
that S = ∅ if r = 0). Then each of the xj for j > r has to be algebraic over
k[x1, . . . , xr] (as in the proof if the existence of a transcendence basis), since
otherwise the subset {x1, . . . , xr, xj} would be algebraically independent over
k, contradicting the maximality of S.

(b) Suppose n > r and that the result is true for n− 1 generators.

i. Since the element xn is algebraic over k[x1, . . . , xn−1] there exists a poly-
nomial 0 6= f ′ ∈ k[x1, . . . , xn−1][X] such that f ′(xn) = 0. We may
clearly regard f ′ as a polynomial with coefficients in k and indetermi-
nates X1, . . . , Xn, so that the conclusion is reached.

ii. Suppose that such λi, 1 6 i 6 n − 1, don’t exist. Then we have, by ho-
mogeneity of F , F (X1, . . . , Xn) = XdegF

n F (X1, . . . , Xn−1, 1); now, since
k is an infinite field, the polynomial F (X1, . . . , Xn−1, 1) vanishes in the
ring k[X1, . . . , Xn−1] (otherwise the λi would exist). Hence we deduce
F = 0, contradicting the fact that f 6= 0.
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iii. Define x′i = xi − λixn for all 1 6 i 6 n− 1. We may write

F (x1, . . . , xn) =
∑
I

aI

n∏
j=1

x
ij
j =

∑
I

aIx
in
n

n−1∏
j=1

(x′j + λjxn)ij .

The coefficient of xdegFn in F ∈ k[x′1, . . . , x
′
n−1, xn] is thus

c =
∑
I

aIλ
i1
1 · · ·λ

in−1

n−1 = F (λ1, . . . , λn−1, 1) 6= 0 ,

so that the equation c−1f(x1, . . . , xn−1, xn) = 0 is monic when written
in A′[xn]. As a consequence, xn is integral over A′. This implies that
A = k[x1, . . . , xn] is integral over A′. Using the induction hypothesis, A′

is integral over some k[y1, . . . , yr], with y1, . . . , yr algebraically indepen-
dent over k. By transitivity of integral dependence, A is integral over
k[y1, . . . , yr].

3. Let k be an algebraically closed field.

(a) Prove that k is infinite.

(b) Let X be an affine algebraic variety in kn with coordinate ring A 6= 0. Use the
outlined proof of Noether’s normalization lemma to prove that there exists a
linear subspace L of dimension r in kn and a linear mapping kn → L which
maps X onto L.

Solution.

(a) Assume that k is a finite field, say k = {a1, . . . , an}. Then it is obvious that
the non-constant polynomial f(X) =

∏n
i=1(X − ai) + 1 ∈ k[X] has no roots

over k. Thus k is not algebraically closed.

(b) Let X be an affine variety in kn defined by an ideal I(X) such that its
coordinate ring A = k[X1, . . . , Xn]/I(X) is non-zero. A is obviously a finitely
generated k-algebra. Since k is infinite by the previous point, Noether’s
normalization lemma applies and gives elements y1, . . . , yr ∈ A which are
algebraically independent over k and such that A is integral over k[y1, . . . , yr].
The proof given in the previous exercise shows that the yi may be choosen to
be linear combinations of the x1, . . . , xn (where here xi denotes the projection
of Xi onto A).

Denote by ι : X → kn the canonical inclusion; we want to find a linear sub-
space L of dimension r in kn and a linear map ϕ : kn → L such that ϕ ◦ ι
is surjective. Transposing this condition in the language of the associated
coordinate rings, this is equivalent to find linear polynomials f1, . . . , fn−r ∈
k[X1, . . . , Xn] and a ”linear” map ϕ∗ : k[X1, . . . , Xn]/(f1, . . . , fn−r)→ k[X1, . . . , Xn]
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such that the map π◦ϕ∗ : k[X1, . . . , Xn]/(f1, . . . , fn−r)→ A is injective, where
π : k[X1, . . . , Xn]→ A denotes the canonical projection. We are thus lead to
find a linear function ψ : k[X1, . . . , Xn] → A whose kernel is an ideal gen-
erated ny n − r linear polynomials f1, . . . , fn−r. It suffices to express the
Xj, j = 1, . . . , n (actually an appropriate subset of them) linearly as func-
tions of the yi, 1 6 i 6 r, and send each Xj to the thus-obtained linear
combination of the yi.

4. Let R be a ring. Show that the following are equivalent:

(a) R is a Jacobson ring;

(b) for any ring S and any surjective ring homomorphism f : R→ S, the nilrad-
ical ideal of S coincides with its Jacobson ideal;

(c) every prime ideal in R which is not maximal is equal to the intersection of
the prime ideals which contain it strictly.

(Hint: for the implication (c) ⇒ (a) argue as follows. Assume (a) is false, then
there is a prime ideal which is not the intersection of maximal ideals. Passing to
the quotient ring, we may assume that R is a domain with non-zero Jacobson ideal.
Pick a non-zero f in the Jacobson ideal, then Rf 6= 0, thus Rf has a maximal ideal
whose contraction in R is a prime ideal not containing f , and which is maximal
with respect to this property.)

Solution. [(a) ⇒ (b)] Let a ⊂ R be an ideal, and denote by M(a) the set of
maximal ideals of R containing a. By assumption the radical ideal rad(a) is the
intersection of all elements of M(a). This clearly implies that, in the quotient R/a,
the Jacobson and the nilradical ideal coincide. Since any homomorphic image of
R is isomorphic to R/a for some ideal a ⊂ R by the first isomorphism theorem for
rings, the conclusion is achieved.

[(b) ⇒ (c)] Let p ∈ Spec(R) be not maximal. Then the trivial ideal (0) is not
maximal in the quotient A/p. Since A/p is an integral domain, its nilradical
vanishes; by assumption, the nilradical coincides with the Jacobson radical, which
therefore vanishes as well. Going back to the ring R and the ideal p, this implies
precisely that p is the intersection of all prime ideals containing it strictly.

[(c)⇒ (a)] We follow the given hint, thus in particular we may assume that R is
a domain with non-zero Jacobson ideal. Choose a non-zero f ∈ Jac(R), so that
the localization Rf 6= 0. Now Rf contains a maximal ideal q, whose contraction
q′ is a prime ideal which is maximal with respect to the property of not meeeting
Sf . By assumption q′ is an intersection of prime ideals containing f , which gives
the desired contradiction.

5. Let G be a group (not necessarily abelian), and let F be a filter on G satisfying
the following properties:
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• for any V ∈ F there exists U ∈ F such that UU−1 ⊂ V , where UU−1 =
{xy−1 : x, y ∈ U};
• for any V ∈ F and any g ∈ G, gV g−1 ∈ F , where gV g−1 = {gxg−1 : x ∈ V }.

Prove that there exists a unique topology τ on G making G into a topological
group (i.e. multiplication and inverse are continuous maps with respect to τ) and
for which F is the filter of neighborhoods of the identity element eG.

Solution. We first show uniqueness. If τ is a topology on G making it into a
topological group, then for any fixed a ∈ G the map G 3 g 7→ ag is an homeo-
morphism. Thus, the filter of neighborhoods Fa of a is simply the a-translated of
F , assuming that τ induces the filter F as filter of neighborhoods of the identity.
Therefore, F uniquely determines the filter of neighborhoods of every point, and
thus the topology (two topologies on a set having the same filters of neighborhoods
at every point must coincide).

Existence is more involved. The first property clearly implies that eG ∈ V for any
V ∈ F . Now let g ∈ G, and define Fg = {gV : V ∈ F}, the g-translated of F .
It is immediate that Fg is a filter on G all of whose elements contain the point g.
We now claim that, for any gV in Fg, there exists gW ∈ Fg such that gV ∈ Fh

for all h ∈ gW . This, by a general result in general topology, implies that there
exists a topology τ for which Fg is the filter of neighborhoods at g, for any g ∈ G.
The first property of F implies that, given V ∈ F , there exists W ∈ F such that
WW ⊂ V ; indeed, take U ∈ F such that UU−1 ⊂ V . Then any W ∈ F with
W ⊂ U ∩U−1 will verify the property. We now claim that, with this choice of W ,
we have that gV ∈ Fh for all h ∈ gW . In fact, if h ∈ gW , then hW ∈ Fh and
hW ⊂ gWW ⊂ gV , so that gV ∈ Fh.

We now prove that the group operations are continuous with respect to τ . It clearly
suffices to show that the map G×G 3 (g, h) 7→ gh−1 is continuous. Fix (g0, h0) ∈
G × G, and let g0h

−1
0 V , with V ∈ F , be an arbitrary neighborhood of g0h

−1
0 .

By the assumption on F , there exists U ∈ F such that UU−1 ⊂ h−10 V h0. Thus
(g0h

−1
0 )−1[g0U(h0U)−1] = h0g

−1
0 g0UU

−1h−10 = h0UU
−1h−10 ⊂ h0(h

−1
0 V h0)h

−1
0 = V ,

which means that g0U(h0U)−1 ⊂ g0h
−1
0 V ,showing the desired continuity at the

point (g0, h0) ∈ G×G.

6. Let G be an abelian group, and let G = G0 ⊃ G1 ⊃ · · · be a descending filtration
of subgroups. Consider the set F = {V ⊂ G : Gn ⊂ V for some n ∈ N}

(a) Prove that F satisfies the conditions in the previous exercise. The resulting
topology onG is called the Krull topology (determined by the given filtration).

(b) Show that if H ∈ F is a subgroup, then it is open for the Krull topoogy.

(c) Assume that G = R is a commutative ring, and suppose the Gi are ideals
of R. Prove that ring multiplication is continuous with respect to the Krull
topology (so that R becomes a topological ring).

5



Solution.

(a) We first show that F is a filter. The set F is non-empty by definition.
Moreover, each V ∈ F is non-empty because it contains Gn 6= ∅ for some
n ∈ N. Clearly, if V ∈ F and W ⊃ V , then W ∈ F as well. Finally,
if V,W ∈ F , pick integers n,m such that Gn ⊂ V and Gm ⊂ W ; then
Gmax{n,m} ⊂ V ∩W , thus V ∩W ∈ F . Hence F is a filter.

The second property is obviously satisfied since G is abelian. For the first one,
simply notice that GnG

−1
n = Gn for all n, since Gn is a subgroup. Thus, F

verifies all the assumptions of the previous exercise; as a consequence, there is
a well-defined group topology on G for which F is the filter of neighborhoods
of the identity.

(b) Let H ∈ F be a subgroup, so that in particular Gn ⊂ H for some n ∈ N . For
any point h ∈ H, the set hGn is a neighborhood of h; moreover, hGn ⊂ H
since H is a subgroup, so that H is also a neighborhood of h. Thus H is a
neighborhood of any of its elements, hence it is open.

(c) Fix x, y ∈ R, and let xyGi be an arbitrary basis neighborhood of the point xy
for the Krull topology. Then (xGi)(yGi) = xyGiGi ⊂ xyGi, as multiplication
is commutative and Gi is an ideal. Thus, xGi × yGi is a neighborhood of
(x, y) ∈ R×R for the product topology which is mapped by the multiplication
operation inside xyGi. This shows continuity of multiplication at an arbitrary
point (x, y) ∈ R×R.
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