ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	September 27, 2018

Exercise Sheet 1

Exercise 1

Let G_{α} be a topological group, where $\alpha \in A$ is a family of indices. Show that the product group $\prod_{\alpha \in A} G_{\alpha}$ endowed with the product topology is a topological group as well.

Exercise 2

Show that the topological group O(p,q) for $p,q \ge 1$ is not compact.

Exercise 3

Let p be a prime number. Prove that the map

 $i:\mathbb{Z}\to\mathbb{Z}_p$

given by $i(x) = (x \mod p^n)_{n \in \mathbb{N}}$ is injective with dense image.

Exercise 4

Let (X, d) be a metric space. Suppose that the closed ball $B_{\leq r}(x) = \{y \in X | d(x, y) \leq r\}$ of radius r centered at x is compact, for all $r \geq 1$ and all $x \in X$. Show the set Isom(X) of the isometries of X is a locally compact topological group when endowed with the compact-open topology.

Exercise 5

Let G be a topological group and let V be a neighborhood of the neutral element e. Show that there exists an open set W such that $e \in W$, $W^2 \subset V$ and $W = W^{-1}$.