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Solutions: Exercise Sheet 1

Exercise 1
Let Gα be a topological group, where α ∈ A is a family of indices. Show that
the product group

∏
α∈AGα endowed with the product topology is a topological

group as well.

Solution: Since Gα is a topological group, we know that for each α ∈ A the
maps

µα : Gα ×Gα → Gα, iα : Gα → Gα

of multiplication and inversion are continuous. If we set G :=
∏
α∈AGα and we

denote an element g ∈ G as g = (gα)α∈A, we know that the multiplication and
the inversion for G are defined as it follows

µ : G×G→ G, µ((gα)α∈A, (hα)α∈A) := (µα(gα, hα))α∈A,

i : G→ G, i((gα)α∈A) := (iα(gα))α∈A.

We need to show that both µ and i are continuous. We are going to prove the
statement only for i, since the procedure is similar in the case of the mulplication.
Denote by pα : G → Gα the projection map with respect to the α-component,
that means p((gα)α∈A) := gα. By the universal property of the product topology,
we know that i is continuous if and only if pα ◦ i is continuous for every α ∈ A.

Let now Vα ⊂ Gα be an open subset of Gα and consider (pα ◦ i)−1(Vα). We
have that p−1α (Vα) = Vα ×

∏
β∈A\{α}Gβ is open since the projection map is

continuous. By the way we defined i, we have that i−1(p−1α (Vα)) = i−1α (Vα) ×∏
β∈A\{α}Gβ , and since iα is continuous i−1α (Vα) is open. Hence (pα ◦ i)−1(Vα)

is a cylinder, which is open in the product topology, as claimed.

Exercise 2
Show that the topological group O(p, q) for p, q ≥ 1 is not compact.

Solution: We start showing that O(1, 1) is not compact. Recall that

O(1, 1) = {g ∈M(2,R)|gtI1,1g = I1,1},

where

I1,1 =

(
1 0
0 −1

)
.

If we denote by

g =

(
a b
c d

)
.

an element of O(1, 1), then the defining equation gives us back the following
system of equations
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c2 − a2 = 1,

ab = cd,

b2 − d2 = 1.

Since the hyperbolic sine is bijective, there exists a unique t ∈ R such that
sinh(t) = a. If we substitute this value of a in the first equation, we obtain
c = ± cosh(t). Hence we must have d = ± tanh(t)b, from which it follows that
b = ± cosh(t) and d = sinh(t). In particular the set of matrices of the form

Xt :=

(
sinh(t) cosh(t)
cosh(t) sinh(t)

)
, t ∈ R

is a subgroup of O(1, 1). As t goes to infinity, each coordinate of the matrix Xt

written above goes to infinity, hence O(1, 1) contains a closed subgroup which
is not compact, being unbounded (here we are using the characterization of
compact sets of Rn as closed and bounded sets). In particular neither O(1, 1)
can be compact.

To show that O(p, q) is not compact if p, q ≥ 1, it suffices to show that it
contains a subgroup isomorphic to O(1, 1). Recall that O(p, q) is defined as it
follows

O(p, q) = {g ∈M(p+ q,R)|gtIp,qg = Ip,q},

where Ip,q is the diagonal matrix with the first p entries equal to 1 and the last
q entries equal to −1. We can consider the map

ϕ : O(1, 1)→ O(p, q), ϕ(X) :=

 Ip−1 0p−1,2 0p−1,q−1
02,p−1 X 02,q−1

0q−1,p−1 0q−1,2 Iq−1

 ,

where, for every k, l ∈ N, the matrices Ik and 0k,l are the identity of order k and
the zero matrix of order (k, l), respectively. This map is the required injection
and we are done.

Exercise 3
Let p be a prime number. Prove that the map

i : Z→ Zp

given by i(x) = (x mod pn)n∈N is injective with dense image. The set of p-adic
integers Zp is endowed with the topology exposed during the lectures.

Solution: Recall that

Zp = {(xn)n∈N ∈
∏
n∈N

Z /pn Z |ϕn(xn+1) = xn},
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where ϕn : Z /pn+1 Z→ Z /pn Z is the reduction map. If we denote an element
of Zp as x = (xn)n∈N, we define also the projection map πn : Zp → Z /pn Z,
given by πn(x) = xn.

We first prove that the map i is injective. Assume that, given x ∈ Z, we have
i(x) = 0, where 0 is the zero element of Zp. This implies that x ≡ 0 mod pn

for every n ∈ N, or equivalently pn|x for every n ∈ N, but this can happen only
if x = 0, hence i is injective.

We now prove that i has dense image. To do this, recall that

Ker(πn) := {(xn)n∈N ∈ Zp |xn = xn−1 = . . . = x1 = 0}, n ∈ N

is a fundamental system of neighborhoods of 0 ∈ Zp. If we consider x ∈ Zp, a
fundamental system of neighborhoods of x is given by {x + Ker(πn)}n∈N. We
write

Nm(x) := x +Ker(πm) = {(yn)n∈N ∈ Zp |xm = ym, . . . , x1 = y1}.

We want to show that, for any m ∈ Z, there exists x ∈ Z such that i(x) ∈
Nm(x). Note that x actually depends on m, but we do not want to overload
the notation. Take now any x ∈ Z such that x ≡ xm mod pm. In particular we
have that pm|x−xm and hence pk|x−xm for every k ≤ m. By the compatibility
condition it follows

xm−1 ≡ xm mod pm−1 ≡ x mod pm−1.

Since the equation above holds for every k ≤ m, the claim follows.

Exercise 4
Let (X, d) be a metric space. Suppose that the closed ball B≤r(x) = {y ∈
X|d(x, y) ≤ r} of radius r centered at x is compact, for all r ≥ 1 and all x ∈ X.
Show the set Isom(X) of the isometries of X is a locally compact topological
group when endowed with the compact-open topology.

Solution: Denote by G = Isom(X). We need to show that µ : G×G→ G given
by µ(f, g) := f ◦ g and the inversion i : G → G are continuous with respect to
compact-open topology.

Let f ◦ g be in a subbasis element S(K,U), where K is compact and U is
open in X. We know that

(f ◦ g)(K) ⊂ U
or equivalently

g(K) ⊂ f−1(U),

since f is bijective. Since closed balls are compact, we can find an open neigh-
borhood W of g(K) which satisfies

g(K) ⊂W ⊂W ⊂ f−1(U)

and W is compact. Consider now S(W,U) × S(K,W ). This is an open neigh-
borhood of (f, g) is G × G. Moreover, given (h, l) ∈ S(W,U) × S(K,W ), it
holds

(h ◦ l)(K) ⊂ h(W ) ⊂ U,
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hence (h ◦ l) ∈ S(K,U).
We want to prove that the inversion is continuous. We are going to exploit

the fact that the compact-open topology coincides with uniform convergence on
compact set in our setting. Let (fn)n∈N be a sequence of isometries converging to
an isometry f on every compact subset K of X. We need to show that (f−1n )n∈N
converges to f−1 as well. Let K be a compact subset of X. It holds

sup
K
d(f−1n (x), f−1(x)) = sup

K
d(f−1n (ff−1(x)), f−1(x)) = sup

K
d(f(f−1(x)), fn(f

−1(x)),

where the last equality comes from the fact that fn is an isometry. Since f is an
isometry as well, it is in particular a homeomorphism, hence f−1(K) is compact.
Hence we get

sup
K
d(f(f−1(x)), fn(f

−1(x)) = sup
f−1(K)

d(f(y), fn(y))

and the last term converges to zero, as desired.
Since any isometry f ∈ G satisfies d(x, y) = d(f(x), f(y)) for any x, y ∈ X,

then any family F ⊂ G of isometries is automatically an equicontinuous family.
We need to show that every f ∈ G admits a compact neighborhood. We

claim that it suffices to prove this property in the particular case of f equal to
the identity map idX . Indeed if idX admits a compact neighborhood F , then
f(F) will be a compact neighborhood of f . Fix x ∈ X and r ≥ 0. We define

Fr(x) := {f ∈ G|f(B≤r(x)) ⊂ B≤2r(x)}.
The set defined above contains the identity and it is equicontinuous for what

we said before. Let y ∈ B≤r(x). Since d(f(y), x) ≤ 2r for every f ∈ Fr(x), the
closed set {f(y)|f ∈ Fr(x)} is compact, being a closed subset of a compact set
B≤2r(x) (recall that this set is compact by hypothesis). Since f is an isometry
then for every z ∈ X we have that {f(z)|f ∈ Fr(x)} lies in a closed ball. Indeed
if y ∈ B≤r(x) it holds

d(f(z), x) ≤ d(f(z), f(y)) + d(f(y), x) ≤ d(z, y) + r,

Hence {f(z)|f ∈ Fr(x)} is compact for every z ∈ X and this implies that Fr(x)
is pointwise bounded. We desume that Fr(x) is compact by the Ascoli-Arzela
theorem.

Exercise 5
Let G be a connected topological group and let V be a connected neighborhood
of the neutral element. Show that there exists a neighborhood W such that
W 2 ⊂ V and W =W−1.

Solution: We know that the multiplication µ : G × G → G is continuous. In
particular µ−1(V ) is an open set containing (e, e) ∈ G×G. By the definition of
product topology, there must exist V1, V2 ⊂ G open subsets containing e such
that V1 × V2 ⊂ µ−1(V ). Define U = V1 ∩ V2 and W = U ∩ U−1. We claim that
W is the neighborhood we were looking for. Obviously, by definition, we have
W = W−1. We need to show that W 2 ⊂ V . Let x, y ∈ W and consider their
product xy = µ(x, y). In particular x, y ∈ V1 ∩ V2 and hence (x, y) ∈ V1 × V2
from which we deduce xy ∈ V , as claimed.
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