ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

Exercise Sheet 4

Exercise 1

Let G, H be two Lie groups and let $\varphi : G \to H$ be a smooth homomorphism. Show that φ has constant rank.

Exercise 2

Let M be a smooth manifold and let $p \in M$ a point. Denote by $C^{\infty}(p)$ the ring of germs of functions which are smooth at p.

1. Show that

$$\mathfrak{m}_p := \{ f \in C^\infty(p) : f(p) = 0 \}$$

is a maximal ideal of $C^{\infty}(p)$.

2. Let \mathfrak{m}_p^2 the ideal generated by all the products of the form $f \cdot g$, where $f, g \in \mathfrak{m}_p$. Show that the tangent space T_pM is canonically isomorphic to the dual space $(\mathfrak{m}_p / \mathfrak{m}_p^2)^*$ as \mathbb{R} -vector space.

Exercise 3

Show that the cross product \wedge on \mathbb{R}^3 gives it a structure of Lie algebra.

Exercise 4

Show that it holds

$$(D_{\mathrm{Id}} \det)(X) = \mathrm{tr}(X)$$

for every $X \in M(n, \mathbb{R})$.

Exercise 5

Compute explicitly the Lie algebra of the group O(p,q) for every p,q.

Exercise 6

Let G, H be Lie groups with associated Lie algebras $\mathfrak{g}, \mathfrak{h}$. Verify that the Lie algebra of the product $G \times H$ is $\mathfrak{g} \times \mathfrak{h}$ where the bracket on the latter is given by

 $[(X_1, Y_1), (X_2, Y_2)] := ([X_1, X_2], [Y_1, Y_2]),$

where $X_1, X_2 \in \mathfrak{g}$ and $Y_1, Y_2 \in \mathfrak{h}$.

Exercise 7

Show that $Sp(2n, \mathbb{R}) \cap O(2n, \mathbb{R})$ and the group U(n) are isomorphic as Lie groups.