ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

Exercise Sheet 4

Exercise 1

Let G, H be two Lie groups and let $\varphi : G \to H$ be a smooth homomorphism. Show that φ has constant rank.

Solution: We need to show that for every $g \in G$ the rank of the linear map

$$D_g \varphi: T_g G \to T_{\varphi(g)} H$$

is constant, that is it does not depend on g. Since φ is a homomorphism, it should be clear that we have the following commutative diagram

$$\begin{array}{c} G \xrightarrow{\varphi} H \\ \downarrow L_g & \downarrow L_{\varphi(g)} \\ G \xrightarrow{\varphi} H, \end{array}$$

where L_g and $L_{\varphi(g)}$ are the maps given by left translation by g and $\varphi(g)$, respectively. By the structure of Lie groups and by the smoothness of the homomorphism φ , the diagram above induces the following commutative diagram

$$\begin{array}{c} T_eG \xrightarrow{D_e\varphi} T_eH \\ \downarrow D_eL_g & \downarrow D_eL_{\varphi(g)} \\ T_qG \xrightarrow{D_g\varphi} T_{\varphi(q)}H. \end{array}$$

Since both $D_e L_g$ and $D_e L_{\varphi(g)}$ are isomorphisms, it is clear that

$$\operatorname{rank} D_q \varphi = \operatorname{rank} D_e \varphi$$

for every $g \in G$ and we are done.

Exercise 2

Let M be a smooth manifold and let $p \in M$ a point. Denote by $C^{\infty}(p)$ the ring of germs of functions which are smooth at p.

1. Show that

$$\mathfrak{m}_p:=\{f\in C^\infty(p):f(p)=0\}$$

is a maximal ideal of $C^{\infty}(p)$.

2. Let \mathfrak{m}_p^2 the ideal generated by all the products of the form $f \cdot g$, where $f, g \in \mathfrak{m}_p$. Show that the tangent space T_pM is canonically isomorphic to the dual space $(\mathfrak{m}_p / \mathfrak{m}_p^2)^*$ as \mathbb{R} -vector space.

Solution: To show that \mathfrak{m}_p is a maximal ideal of $C^{\infty}(p)$ we are going to show that the quotient $C^{\infty}(p)/\mathfrak{m}_p$ is a field isomorphic to \mathbb{R} (recall that \mathfrak{m} is a maximal ideal of a ring R iff R/\mathfrak{m} is a field). We define the evaluation map at p as it follows

$$\operatorname{ev}_p : C^{\infty}(p) \to \mathbb{R}, \ \operatorname{ev}_p[f] := f(p),$$

ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

where [f] denotes the class of the function f in $C^{\infty}(p)$. First of all we notice that the evaluation map is well-defined. Moreover it is clear that it is a ring homomorphism which is surjective and whose kernel is equal to

$$\ker(\mathrm{ev}_p) = \mathfrak{m}_p \,.$$

Hence we have the following isomorphism of rings

$$C^{\infty}(p)/\mathfrak{m}_p = C^{\infty}(p)/\ker(\mathrm{ev}_p) \cong \mathbb{R},$$

and since \mathbb{R} is a field, the same must hold for $C^{\infty}(p)/\mathfrak{m}_p$, as desired.

Solution: In this section, to avoid heavy notation, we are going to drop brackets to denote the class of a function in $C^{\infty}(p)$.

Recall that among all the possible way to define it, the tangent space T_pM at p can be seen as the \mathbb{R} -vector space of derivations of $C^{\infty}(p)$. More precisely any element $X \in T_pM$ can be thought of as a \mathbb{R} -linear map

$$X: C^{\infty}(p) \to \mathbb{R},$$

which satisfies the following property

$$X(fg) = f(p)X(f) + g(p)X(f).$$

We briefly recall some facts. Let us fix a coordinate chart $(U, (x_1, \ldots, x_m))$ around p, such that p has coordinates $x_1 = \ldots = x_m = 0$. A possible basis for the tangent space at p is given by

$$\mathcal{B} = \{\frac{\partial}{\partial x_1}|_p, \dots, \frac{\partial}{\partial x_m}|_p\},\$$

that means that every tangent vector X can be written as

$$X = \sum_{i=1}^{m} a_i \frac{\partial}{\partial x_i}|_p,$$

with $a_i \in \mathbb{R}$ for i = 1, ..., m. In particular the action of X on a function $f \in C^{\infty}(p)$ is given by

$$X(f) := \sum_{i=1}^{m} a_i \frac{\partial f}{\partial x_i}(p).$$

By the discussion above, we immediately see that X is an element of the dual $C^{\infty}(p)^*$. We define a map

res :
$$T_p M \to \mathfrak{m}_p^*$$
, res $(X) := X|_{\mathfrak{m}_p}$,

where $X|_{\mathfrak{m}_p}$ is the restriction to \mathfrak{m}_p of the derivation X. This means that X has to be interpreted as a linear functional $X : \mathfrak{m}_p \to \mathbb{R}$. Since X is a derivation it should be clear that X is identically zero on \mathfrak{m}_p^2 . Indeed, let $f, g \in \mathfrak{m}_p$. It holds

$$X(fg) = f(p)X(g) + g(p)X(f) = 0,$$

since both f and g satisfy f(p) = g(p) = 0. By this condition, we get a well-defined map

$$\Phi: T_p M \to (\mathfrak{m}_p \,/\, \mathfrak{m}_p^2)^*$$

induced by the restriction.

We first prove injectivity of Φ . Assume that X induces the zero functional on \mathfrak{m}_p . Since X has the form

$$X := \sum_{i=1}^{m} a_i \frac{\partial}{\partial x_i} |_p,$$

for suitable values of $a_i \in \mathbb{R}$, it must hold

$$X(f) := \sum_{i=1}^{m} a_i \frac{\partial f}{\partial x_i}(p) = 0,$$

for every $f \in C^{\infty}(p)$ with f(p) = 0. This implies immediately that $a_i = 0$ for all i = 1, ..., m, hence X = 0 and Φ is injective.

We now prove surjectivity. Let $\varphi : \mathfrak{m}_p \to \mathbb{R}$ be a linear function which vanishes on \mathfrak{m}_p^2 . Since the coordinate function $x_i : U \to \mathbb{R}$ determines a well-defined element of \mathfrak{m}_p , we can define

$$X := \sum_{i=1}^{m} \varphi(x_i) \frac{\partial}{\partial x_i} |_p.$$

By a standard result in differential geometry any function $f \in \mathfrak{m}_p$ can be written in coordinates (x_1, \ldots, x_n) as it follows

$$f(x_1,\ldots,x_m) = \sum_{i=1}^m \frac{\partial f}{\partial x_i}(p)x_i + \sum_{i=1}^m g_i(x_1,\ldots,x_m)x_i,$$

where each $g_i \in \mathfrak{m}_p$. This implies that $\varphi(f)$ is completely determined by the values assumed by φ on the functions x_i , hence $X = \varphi$ and we are done.

Exercise 3

Show that the cross product \wedge on \mathbb{R}^3 gives it a structure of Lie algebra.

Solution: It is a simple verification and we omit it.

Exercise 4

Show that it holds

$$(D_{\mathrm{Id}} \det)(X) = \mathrm{tr}(X)$$

for every $X \in M(n, \mathbb{R})$.

Solution: Let det : $GL(n, \mathbb{R}) \to \mathbb{R}^{\times}$ be the determinant map. We know that this is a differentiable homomorphism (the determinant is a polynomial in terms of the coordinates of the matrix). Let $X \in M(n, \mathbb{R})$ be any matrix. To compute the differential of the determinant at the identity Id we have to compute

$$(D_{\mathrm{Id}} \det)(X) = \frac{d}{dt}|_{t=0} \det(\mathrm{Id} + tX).$$

Indeed c(t) := Id + tX is a smooth curve passing through Id, completely contained in $GL(n, \mathbb{R})$ for small values of t and with derivative at zero equal

ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

to $\dot{c}(0) = X$ (recall the computation of the differential of a smooth map in terms of smooth curves). We are going to exploit the Leibniz formula for the determinant. If we denote by \mathfrak{S}_n the symmetric group on n elements and by $\varepsilon(\sigma)$ the sign of a permutation $\sigma \in \mathfrak{S}_n$, we have

$$\begin{aligned} \frac{d}{dt}|_{t=0} \det(\mathrm{Id} + tX) &= \frac{d}{dt}|_{t=0} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma)(\mathrm{Id} + tX)_{\sigma(1)1} \dots (\mathrm{Id} + tX)_{\sigma(n)n} = \\ &= \frac{d}{dt}|_{t=0} \sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma)(\delta_{\sigma(1)1} + tX_{\sigma(1)1}) \dots (\delta_{\sigma(n)n} + tX_{\sigma(n)n}), \end{aligned}$$

where δ_{ij} is the Kronecker symbol. It shoud be clear that we can write

$$\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) (\delta_{\sigma(1)1} + tX_{\sigma(1)1}) \dots (\delta_{\sigma(n)n} + tX_{\sigma(n)n}) = a_0 + a_1t + t^2q(t),$$

where $a_0, a_1 \in \mathbb{R}$ and $q(t) \in \mathbb{R}[t]$. In particular, it holds

$$\frac{d}{dt}|_{t=0}\sum_{\sigma\in\mathfrak{S}_n}\varepsilon(\sigma)(\delta_{\sigma(1)1}+tX_{\sigma(1)1})\dots(\delta_{\sigma(n)n}+tX_{\sigma(n)n})=\frac{d}{dt}|_{t=0}(a_0+a_1t+t^2q(t))=a_1$$

Everything boils down to compute the coefficient a_1 , that means the coefficient in degree 1 of the polynomial $\sum_{\sigma \in \mathfrak{S}_n} \varepsilon(\sigma) (\delta_{\sigma(1)1} + tX_{\sigma(1)1}) \dots (\delta_{\sigma(n)n} + tX_{\sigma(n)n})$. It should be clear that we have

$$a_1 = \sum_{\sigma \in \mathfrak{S}_n} \sum_{i=1}^n \varepsilon(\sigma) \delta_{\sigma(1)1} \dots X_{\sigma(i)i} \dots \delta_{\sigma(n)n},$$

that means the in all the possible products above the only coefficient of the matrix X appears with indices equal to $(\sigma(i), i)$. The only non-vanishing term is given when σ is the identity, otherwise at least one of the Kronecker symbol is equal to zero. Hence we have

$$a_1 = \sum_{\sigma \in \mathfrak{S}_n} \sum_{i=1}^n \varepsilon(\sigma) \delta_{\sigma(1)1} \dots X_{\sigma(i)i} \dots \delta_{\sigma(n)n} = \sum_{i=1}^n X_{ii} = \operatorname{tr}(X).$$

Then we obtained

$$(D_{\mathrm{Id}} \det)(X) = a_1 = \mathrm{tr}(X),$$

and we are done.

Exercise 5

Compute explicitly the Lie algebra of the group O(p,q) for every p,q.

Solution: Denote by n := p + q. Recall that the definition of the group O(p,q) is given by

$$O(p,q) = \{ X \in GL(n,\mathbb{R}) | {}^t X I_{p,q} X = I_{p,q} \}.$$

ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

To compute the Lie algebra associated to O(p,q) we are going to realize this group as a fiber of a suitable constant rank map. We define

$$F: GL(n, \mathbb{R}) \to GL(n, \mathbb{R}), \quad F(X) := {}^{t}XI_{p,q}X.$$

Clearly F is smooth since it can be expressed as a polynomial functions of the coordinates of the matrix X. Additionally, by definition we have $F^{-1}(I_{p,q}) = O(p,q)$. We are going to prove that the map F has constant rank. Let X be any element in $GL(n,\mathbb{R})$ and let Y be any tangent vector at X (that means $Y \in M(n,\mathbb{R})$). Using the usual definition of the differential in terms of smooth curves we have

$$(D_X F)(Y) = \frac{d}{ds}|_{s=0} F(X+sY) = \frac{d}{ds}|_{s=0} ({}^t(X+sY)I_{p,q}(X+sY)) =$$

= $\frac{d}{ds}|_{s=0} ({}^tXI_{p,q}X + s({}^tXI_{p,q}Y + {}^tYI_{p,q}X) + s^2({}^tYI_{p,q}Y)) =$
= $({}^tXI_{p,q}Y + {}^tYI_{p,q}X) = {}^tX(I_{p,q}YX^{-1} + {}^t(X^{-1}){}^tYI_{p,q})X =$
= ${}^tXD_{\mathrm{Id}}(YX^{-1})X.$

From the equation above we deduce that the rank of F is constant and the Lie algebra of O(p,q) is given by

$$\mathfrak{o}(p,q) = \operatorname{Lie}(O(p,q)) = \ker(D_{\operatorname{Id}}F) = \{X \in M(n,\mathbb{R}) | {}^t X I_{p,q} + I_{p,q}X = 0\}.$$

Exercise 6

Let G, H be Lie groups with associated Lie algebras $\mathfrak{g}, \mathfrak{h}$. Verify that the Lie algebra of the product $G \times H$ is $\mathfrak{g} \times \mathfrak{h}$ where the bracket on the latter is given by

$$[(X_1, Y_1), (X_2, Y_2)] := ([X_1, X_2], [Y_1, Y_2]),$$

where $X_1, X_2 \in \mathfrak{g}$ and $Y_1, Y_2 \in \mathfrak{h}$.

Solution: We are going to denote by $\mathfrak{X}(M) = \operatorname{Vect}^{\infty}(M)$ the set of vector fields over a generic manifold M.

We are going to denote by

$$i_G: G \to G \times H, \quad i_G(g) := (g, e)$$

and similarly

$$i_H: H \to G \times H, \quad i_H(h) := (e, h).$$

In the same way, the differential of both maps induces inclusions

$$D_e i_G : T_e G \to T_e G \times T_e H, \quad D_e i_G(u) := (u, 0)$$

and

$$D_e i_H : T_e H \to T_e G \times T_e H, \quad D_e i_G(v) := (0, v)$$

Recall that $T_eG \times T_eH$ is canonically isomorphic to $T_eG \oplus T_eH$ as \mathbb{R} -vector spaces via the map which sends (u, v) to u + v, for every $u \in T_eG$ and every $v \in T_eH$. (In this way we get D_ei_G is simply the inclusion of T_eG into $T_eG \oplus T_eH$ and the same for D_ei_H). This means that every element w in $T_{(e,e)}(G \times H)$ can

ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 8, 2018

be written uniquely as w = u + v, where $u \in T_e G$ and $v \in T_e H$, or equivalently we can identify $T_{(e,e)}(G \times H)$ with $T_e G \oplus T_e H$.

From the lecture, we know that there is a bijection between left-invariant vector fields on G (resp. H) and vectors of the tangent space T_eG (resp. T_eH) and the isomorphism is given by

$$L_G: T_eG \to \mathfrak{X}(G)^G, \quad L_G(u) := u^I$$

where the vector field u^L is defined at the point $g \in G$ as $u_g^L := D_e L_g(u)$.

It should be clear that we have the following commutative diagram

$$T_e G \oplus T_e H \xrightarrow{\simeq} T_{(e,e)}(G \times H)$$
$$\downarrow^{L_G \oplus L_H} \qquad \qquad \downarrow^{L_{G \times H}}$$
$$\mathfrak{X}(G)^G \oplus \mathfrak{X}(H)^H \xrightarrow{\cong} \mathfrak{X}(G \times H)^{G \times H}.$$

The diagram above is telling us that every $(G \times H)$ -left-invariant vector field $Z = w^L$, where $w \in T_{(e,e)}(G \times H)$, can be uniquely written as Z = X + Y, where $X = u^L$ (resp. $Y = v^L$) where $u \in T_eG$ (resp. $v \in T_eH$). Here the left-invariance property has to be understood in $G \times H$ (that means that both u^L and v^L are $G \times H$ left-invariant).

Take now $Z_1, Z_2 \in \mathfrak{X}(G \times H)^{G \times H}$ of the form $Z_i = w_i^L$, where $w_i \in T_{(e,e)}(G \times H)$ for i = 1, 2. By what we have said so far there exist unique $u_i \in T_e G$ and $v_i \in T_e H$ such that $w_i^L = u_i^L + v_i^L$, for i = 1, 2. It holds

$$\begin{split} [Z_1, Z_2] = & [w_1^L, w_2^L] = [u_1^L + v_1^L, u_2^L + v_2^L] = \\ = & [u_1^L, u_2^L] + [u_1^L, v_2^L] + [v_1^L, u_2^L] + [v_1^L, v_2^L]. \end{split}$$

It is immediate to verify that for every $[u^L, v^L] = 0$ for any $u \in T_e G$ and $v \in T_e H$, hence we get

$$[w_1^L, w_2^L] = [u_1^L, u_2^L] + [v_1^L, v_2^L],$$

which is exactly the Lie algebra structure given on the product, and we are done.

Exercise 7

Show that $Sp(2n, \mathbb{R}) \cap O(2n, \mathbb{R})$ and the group U(n) are isomorphic as Lie groups.

Solution: We fix the following notation

$$J_{2n} = \left(\begin{array}{cc} 0_n & -I_n \\ I_n & 0_n \end{array}\right),$$

where 0_n and I_n denote the zero matrix and the identity matrix of order n, respectively. Recall that there exists a suitable basis such that we can write

$$Sp(2n, \mathbb{R}) = \{g \in GL(2n, \mathbb{R}) | {}^t g J_{2n} g = J_{2n} \}.$$

We are going to write g as a block matrix as it follows

$$g = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right),$$

where $A, B, C, D \in M(n, \mathbb{R})$. The condition of being a real symplectic matrix gives us back the following equations

$${}^{t}CA = {}^{t}AC, \quad {}^{t}DB = {}^{t}BD, \quad {}^{t}AD - {}^{t}CB = I_{n}.$$

$$\tag{1}$$

If now require that g is orthogonal, that means $g \in O(2n, \mathbb{R})$, we get another list of equations

$${}^{t}AA + {}^{t}CC = I_n, \ {}^{t}BB + {}^{t}DD = I_n, \ {}^{t}AB + {}^{t}CD = 0_n.$$
(2)

We set now

$$X := A + iC, \quad Y := B + iD.$$

It is easy to see that both X and Y are unitary. Let us check it for X

$${}^{t}\bar{X}X = {}^{t}(A - iC)(A + iC) = ({}^{t}AA + {}^{t}CC) + i({}^{t}AC - {}^{t}CA) = I_{n},$$

by both Equations (1) and Equations (2). In the same we get that Y is unitary. In this way we constructed $X, Y \in U(n)$. We are going to prove now that A = Dand C = -B. Indeed it holds

$${}^{t}\bar{X}Y = {}^{t}(A - iC)(B + iD) = ({}^{t}AB + {}^{t}CD) + i({}^{t}AD - {}^{t}CB) = iI_{n},$$

again by both Equations (1) and Equations (2). In particular this means that we have ${}^{t}\bar{X} = iY^{-1}$ and ${}^{t}\bar{X} = X^{-1}$ at the same time, and by uniquess it must hold X = iY which means exactly A = D and C = -B. So we get that

$$g \in Sp(2n, \mathbb{R}) \cap O(2n, \mathbb{R}) \Leftrightarrow g = \left(\begin{array}{cc} A & -B \\ B & A \end{array} \right)$$

where $A, B \in M(n, \mathbb{R})$ such that $X := A + iB \in U(n)$. Hence we can define

$$\Phi: Sp(2n, \mathbb{R}) \cap O(2n, \mathbb{R}) \to U(n), \quad \Phi \left(\begin{array}{cc} A & -B \\ B & A \end{array} \right) := A + iB,$$

and one can show that this is the desired isomorphism of Lie groups.