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Exercise Sheet 4

Exercise 1

Let G, H be two Lie groups and let ¢ : G — H be a smooth homomorphism.
Show that ¢ has constant rank.

Solution: We need to show that for every g € G the rank of the linear map
Dg(p : TgG — Ttp(g)H

is constant, that is it does not depend on g. Since ¢ is a homomorphism, it
should be clear that we have the following commutative diagram

G—"+H
ng l[’w(g)
G— H,

where L, and L4 are the maps given by left translation by g and ¢(g), re-
spectively. By the structure of Lie groups and by the smoothness of the homo-
morphism ¢, the diagram above induces the following commutative diagram

.62 11

lDeLg lDeLw(Q)

Dy
TgG —_— T¢(9)H.

Since both DLy and De L, (4 are isomorphisms, it is clear that
rankDgp = rankD ¢

for every g € G and we are done.

Exercise 2

Let M be a smooth manifold and let p € M a point. Denote by C*°(p) the ring
of germs of functions which are smooth at p.

1. Show that
my, == {f € C=(p): f(p) =0}

is a maximal ideal of C*°(p).

2. Let mi the ideal generated by all the products of the form f - g, where
f,g € m,. Show that the tangent space T),M is canonically isomorphic to
the dual space (m,, /m2)* as R-vector space.

Solution: To show that m, is a maximal ideal of C*°(p) we are going to show
that the quotient C*°(p)/ m, is a field isomorphic to R (recall that m is a max-
imal ideal of a ring R iff R/ m is a field). We define the evaluation map at p as
it follows

evp : C(p) = R, evy[f] :== f(p),
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where [f] denotes the class of the function f in C°(p). First of all we notice
that the evaluation map is well-defined. Moreover it is clear that it is a ring
homomorphism which is surjective and whose kernel is equal to

ker(ev,) =m,.
Hence we have the following isomorphism of rings
O (p)/ my = O (p) Kex(evy) = R,
and since R is a field, the same must hold for C*°(p)/ m,, as desired.

Solution: In this section, to avoid heavy notation, we are going to drop brackets
to denote the class of a function in C*(p).

Recall that among all the possible way to define it, the tangent space 1, M
at p can be seen as the R-vector space of derivations of C'*°(p). More precisely
any element X € T, M can be thought of as a R-linear map

X :C®(p) = R,
which satisfies the following property
X(f9) =T )X (f) + 9(0) X(]).

We briefly recall some facts. Let us fix a coordinate chart (U, (z1,...,2Zm))
around p, such that p has coordinates z; = ... = x,,, = 0. A possible basis for
the tangent space at p is given by

0 0

B = {aixllp""vaku}a

that means that every tangent vector X can be written as

" 0
X =3 aig -l
i=1 ¢

with a; € R for ¢ = 1,...,m. In particular the action of X on a function

f € C*(p) is given by

X = i .
(1)i= Pz )

By the discussion above, we immediately see that X is an element of the
dual C>(p)*. We define a map

res: T, M — my, res(X) := X/,

where X|y,, is the restriction to m,, of the derivation X. This means that X has
to be interpreted as a linear functional X : m, — R. Since X is a derivation it
should be clear that X is identically zero on mf?. Indeed, let f,g € m,. It holds

X(fg) = f(p)X(g) +9(p)X(f) =0,

since both f and g satisfy f(p) = g(p) = 0. By this condition, we get a well-
defined map
®:T,M — (m, /m2)*
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induced by the restriction.
We first prove injectivity of ®. Assume that X induces the zero functional
on m,. Since X has the form

- 0
X = Zai£|p,
i=1 ¢

for suitable values of a; € R, it must hold

m
Z wp
axl 0,

for every f € C°°(p) with f(p) = 0. This implies immediately that a; = 0 for
alli=1,...,m, hence X =0 and ® is injective.

We now prove surjectivity. Let ¢ : m, — R be a linear function which
vanishes on m2. Since the coordinate function z; : U — R determines a well-

P
defined element of m,, we can define

X = Z 80(177)87|p
i=1

By a standard result in differential geometry any function f € m, can be
written in coordinates (z1,...,z,) as it follows

m
flxr, .o, Zaxl xi+Zgi(x1,...,xm)xi,
i=1

where each g; € m,. This implies that ¢(f) is completely determined by the
values assumed by ¢ on the functions x;, hence X = ¢ and we are done.

Exercise 3
Show that the cross product A on R?® gives it a structure of Lie algebra.

Solution: It is a simple verification and we omit it.

Exercise 4

Show that it holds
(D1q det)(X) = tr(X)
for every X € M(n,R).
Solution: Let det : GL(n,R) — R be the determinant map. We know that
this is a differentiable homomorphism (the determinant is a polynomial in terms

of the coordinates of the matrix). Let X € M(n,R) be any matrix. To compute
the differential of the determinant at the identity Id we have to compute

d
(D1q det)(X) = p lt=o det(Id + tX).

Indeed ¢(t) := Id + tX is a smooth curve passing through Id, completely
contained in GL(n,R) for small values of ¢ and with derivative at zero equal
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to ¢(0) = X (recall the computation of the differential of a smooth map in
terms of smooth curves). We are going to exploit the Leibniz formula for the
determinant. If we denote by &,, the symmetric group on n elements and by
(o) the sign of a permutation o € &,,, we have

d d
7 li=0 det(Id +£X) =—[1— D e(0)Id + X )y - - (Id + £X) g (nyn =

0'6671

d

dt |t =0 Z 8(0)(50(1)1 + tXa(l)l) s (60(71)71 + th’(n)n)v
ceS,

where d;; is the Kronecker symbol. It shoud be clear that we can write

Z E(U)(60(1)1 + tXO’(l)l) s (&I(n)n + th'(n)n) =ap+at+ tQQ(t)v
ceS,

where ag,a; € R and ¢(t) € R[¢]. In particular, it holds

d d
%h:o Z 8(0)(50(1)1+tXU(1)1) ‘e (60(n)n+tXa(n)n) = %hzo(ao—f—alt—‘rtjq(t)) =aj.

oeS,

Everything boils down to compute the coefficient a;, that means the coef-
ficient in degree 1 of the polynomial ) & &(0)(05(1)1 +tXo(1)1) - -+ (Oo(n)n +
tXo(nyn)- It should be clear that we have

Z Z o)1 -+ Xo(i)i - - O (n)ns

oce6,, i=1

that means the in all the possible products above the only coefficient of the
matrix X appears with indices equal to (o(¢),¢). The only non-vanishing term
is given when o is the identity, otherwise at least one of the Kronecker symbol
is equal to zero. Hence we have

Z Z o)1 -+ Xo(i)i -+ Oo(nyn = ZX”—tr
ceS,, i=1

Then we obtained
(Dyg det)(X) = a1 = tr(X),

and we are done.

Exercise 5
Compute explicitly the Lie algebra of the group O(p, q) for every p, q.

Solution: Denote by n := p + ¢. Recall that the definition of the group O(p, q)
is given by
O(p,q) = {X € GL(n,R)|' X1, , X =1, ,}.
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To compute the Lie algebra associated to O(p, q) we are going to realize this
group as a fiber of a suitable constant rank map. We define

F:GL(n,R) - GL(n,R), F(X):="'XI,,X.

Clearly F' is smooth since it can be expressed as a polynomial functions of
the coordinates of the matrix X. Additionally, by definition we have F~1(I, ,) =
O(p, q). We are going to prove that the map F has constant rank. Let X be
any element in GL(n,R) and let Y be any tangent vector at X (that means
Y € M(n,R)). Using the usual definition of the differential in terms of smooth
curves we have

(DXF)(Y) = | g F(X 4 5Y) = 0| g(“(X 4 5¥) (X + 7)) =

d
:£|S:0(tXIP,qX + S<tXIP;LZY + tYIP#IX) + 82(tYIp,qY)) =
=('XI,,Y +'VI,,X)="X(I,,YX '+ (XYY, )X =
=" XD(YX 1)X.

From the equation above we deduce that the rank of F' is constant and the
Lie algebra of O(p, q) is given by

o(p,q) = Lie(O(p, q)) = ker(DwaF) = {X € M(n,R)[" X1Ipq + I, X = 0}.

Exercise 6

Let G, H be Lie groups with associated Lie algebras g, . Verify that the Lie
algebra of the product G x H is g x h where the bracket on the latter is given
by

[(Xh Y1)7 (X27 }/2)] = ([X17 X2]7 [3/17 YYQ])?

where X1, Xs € g and Y7,Y5 € .

Solution: We are going to denote by X(M) = Vect®™ (M) the set of vector fields
over a generic manifold M.
We are going to denote by

ic:G—=GxH, ig(g):=(g,€)
and similarly
iHSH*)GXH, ZH(h) = (6,h).
In the same way, the differential of both maps induces inclusions
D¢ :T.G - T.GxT.H, D.ig(u):= (u,0)
and
Dyig : T.H - T.G xT.H, D.ig(v):=(0,v).

Recall that T.G x T, H is canonically isomorphic to T.G & T. H as R-vector
spaces via the map which sends (u,v) to u + v, for every u € T.G and every
v € T H. (In this way we get D.iq is simply the inclusion of T, G into T.G®T. H
and the same for D.iy ). This means that every element w in T(. .)(G x H) can



ETH Ziirich D-MATH Introduction to Lie grous
Prof. Dr. Marc Burger Alessio Savini November 8, 2018

be written uniquely as w = u + v, where u € T,G and v € T, H, or equivalently
we can identify Ti, (G x H) with T.G ® T H.

From the lecture, we know that there is a bijection between left-invariant
vector fields on G (resp. H) and vectors of the tangent space T.G (resp. T.H)
and the isomorphism is given by

Lo :T.G — X(G)¢, Lg(u) :=u”

where the vector field u” is defined at the point g € G as ué = D.L,(u).
It should be clear that we have the following commutative diagram

T.G®T.H ——— T( (G x H)

JLG ®Lu lLG x H

X(G)E @ X(H)H =— x(G x H)G*H.

The diagram above is telling us that every (G x H)-left-invariant vector field
Z = w’, where w € T(e,e)(G x H), can be uniquely written as Z = X +Y, where
X = ul' (resp. Y = vl) where u € T.G (resp. v € T, H). Here the left-invariance
property has to be understood in G' x H (that means that both u” and v’ are
G x H left-invariant).

Take now Z1, Zo € X(Gx H)%*H of the form Z; = wk, where w; € Te,e)(Gx
H) for i = 1,2. By what we have said so far there exist unique u; € T.G and
v; € T.H such that wZL = uf + v{“, for ¢ = 1,2. It holds

[Z1, Z5] :[w{“,wgf‘] = [uf —&—vlL,uQL +v2L] =

[uf, uy] + [uf, vF] + [vf, ud] + [vf, vE].

It is immediate to verify that for every [u”,v’] = 0 for any v € T.G and
v € T, H, hence we get

[wi', wy] = [ut, ug] + [v1, 03],
which is exactly the Lie algebra structure given on the product, and we are
done.
Exercise 7
Show that Sp(2n, R)NO(2n,R) and the group U (n) are isomorphic as Lie groups.

Solution: We fix the following notation

_ On _In
JQH - < In On )
where 0,, and I,, denote the zero matrix and the identity matrix of order n,

respectively. Recall that there exists a suitable basis such that we can write

Sp(2n,R) = {g € GL(2n,R)|*gJ2ng = Jon }.
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We are going to write g as a block matrix as it follows
(A B
g - O D 9

where A, B,C,D € M(n,R). The condition of being a real symplectic matrix
gives us back the following equations

‘CA="'AC, 'DB ="'BD, 'AD —'CB = I,. (1)

If now require that g is orthogonal, that means g € O(2n,R), we get another
list of equations

"tAA+'CC =1,, 'BB+'DD =1,, 'AB+'CD =0,,. (2)

We set now
X =A+iC, Y :=B+iD.

It is easy to see that both X and Y are unitary. Let us check it for X

XX ="(A—iC)(A+iC) = ((AA+'CC) +i('AC —'CA) = I,

by both Equations and Equations . In the same we get that Y is unitary.
In this way we constructed X,Y € U(n). We are going to prove now that A = D
and C = —B. Indeed it holds

XY =%A—-iC)B+iD)=(*AB+'CD) +i(*AD —'CB) = il,,

again by both Equations and Equations . In particular this means that
we have X =iY ! and X = X! at the same time, and by uniquess it must
hold X = {Y which means exactly A =D and C = —B. So we get that

g € Sp(2n,R)NO(2n,R) & g = ( g _AB >7

where A, B € M(n,R) such that X := A+ iB € U(n). Hence we can define

A -B

®: Sp(2n,R)NO(2n,R) = U(n), @ ( B A

) = A+1B,

and one can show that this is the desired isomorphism of Lie groups.



