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Exercise Sheet 4

Exercise 1
Let G,H be two Lie groups and let ϕ : G → H be a smooth homomorphism.
Show that ϕ has constant rank.

Solution: We need to show that for every g ∈ G the rank of the linear map

Dgϕ : TgG→ Tϕ(g)H

is constant, that is it does not depend on g. Since ϕ is a homomorphism, it
should be clear that we have the following commutative diagram

G
ϕ
//

Lg

��

H

Lϕ(g)

��

G
ϕ
// H,

where Lg and Lϕ(g) are the maps given by left translation by g and ϕ(g), re-
spectively. By the structure of Lie groups and by the smoothness of the homo-
morphism ϕ, the diagram above induces the following commutative diagram

TeG
Deϕ //

DeLg

��

TeH

DeLϕ(g)

��

TgG
Dgϕ
// Tϕ(g)H.

Since both DeLg and DeLϕ(g) are isomorphisms, it is clear that

rankDgϕ = rankDeϕ

for every g ∈ G and we are done.

Exercise 2
Let M be a smooth manifold and let p ∈M a point. Denote by C∞(p) the ring
of germs of functions which are smooth at p.

1. Show that
mp := {f ∈ C∞(p) : f(p) = 0}

is a maximal ideal of C∞(p).

2. Let m2
p the ideal generated by all the products of the form f · g, where

f, g ∈ mp. Show that the tangent space TpM is canonically isomorphic to
the dual space (mp /m

2
p)
∗ as R-vector space.

Solution: To show that mp is a maximal ideal of C∞(p) we are going to show
that the quotient C∞(p)/mp is a field isomorphic to R (recall that m is a max-
imal ideal of a ring R iff R/m is a field). We define the evaluation map at p as
it follows

evp : C∞(p)→ R, evp[f ] := f(p),
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where [f ] denotes the class of the function f in C∞(p). First of all we notice
that the evaluation map is well-defined. Moreover it is clear that it is a ring
homomorphism which is surjective and whose kernel is equal to

ker(evp) = mp .

Hence we have the following isomorphism of rings

C∞(p)/mp = C∞(p)/ ker(evp) ∼= R,

and since R is a field, the same must hold for C∞(p)/mp, as desired.

Solution: In this section, to avoid heavy notation, we are going to drop brackets
to denote the class of a function in C∞(p).

Recall that among all the possible way to define it, the tangent space TpM
at p can be seen as the R-vector space of derivations of C∞(p). More precisely
any element X ∈ TpM can be thought of as a R-linear map

X : C∞(p)→ R,

which satisfies the following property

X(fg) = f(p)X(f) + g(p)X(f).

We briefly recall some facts. Let us fix a coordinate chart (U, (x1, . . . , xm))
around p, such that p has coordinates x1 = . . . = xm = 0. A possible basis for
the tangent space at p is given by

B = { ∂

∂x1
|p, . . . ,

∂

∂xm
|p},

that means that every tangent vector X can be written as

X =

m∑
i=1

ai
∂

∂xi
|p,

with ai ∈ R for i = 1, . . . ,m. In particular the action of X on a function
f ∈ C∞(p) is given by

X(f) :=

m∑
i=1

ai
∂f

∂xi
(p).

By the discussion above, we immediately see that X is an element of the
dual C∞(p)∗. We define a map

res : TpM → m∗p, res(X) := X|mp ,

where X|mp
is the restriction to mp of the derivation X. This means that X has

to be interpreted as a linear functional X : mp → R. Since X is a derivation it
should be clear that X is identically zero on m2

p. Indeed, let f, g ∈ mp. It holds

X(fg) = f(p)X(g) + g(p)X(f) = 0,

since both f and g satisfy f(p) = g(p) = 0. By this condition, we get a well-
defined map

Φ : TpM → (mp /m
2
p)
∗
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induced by the restriction.
We first prove injectivity of Φ. Assume that X induces the zero functional

on mp. Since X has the form

X :=

m∑
i=1

ai
∂

∂xi
|p,

for suitable values of ai ∈ R, it must hold

X(f) :=

m∑
i=1

ai
∂f

∂xi
(p) = 0,

for every f ∈ C∞(p) with f(p) = 0. This implies immediately that ai = 0 for
all i = 1, . . . ,m, hence X = 0 and Φ is injective.

We now prove surjectivity. Let ϕ : mp → R be a linear function which
vanishes on m2

p. Since the coordinate function xi : U → R determines a well-
defined element of mp, we can define

X :=

m∑
i=1

ϕ(xi)
∂

∂xi
|p.

By a standard result in differential geometry any function f ∈ mp can be
written in coordinates (x1, . . . , xn) as it follows

f(x1, . . . , xm) =

m∑
i=1

∂f

∂xi
(p)xi +

m∑
i=1

gi(x1, . . . , xm)xi,

where each gi ∈ mp. This implies that ϕ(f) is completely determined by the
values assumed by ϕ on the functions xi, hence X = ϕ and we are done.

Exercise 3
Show that the cross product ∧ on R3 gives it a structure of Lie algebra.

Solution: It is a simple verification and we omit it.

Exercise 4
Show that it holds

(DId det)(X) = tr(X)

for every X ∈M(n,R).

Solution: Let det : GL(n,R) → R× be the determinant map. We know that
this is a differentiable homomorphism (the determinant is a polynomial in terms
of the coordinates of the matrix). Let X ∈M(n,R) be any matrix. To compute
the differential of the determinant at the identity Id we have to compute

(DId det)(X) =
d

dt
|t=0 det(Id + tX).

Indeed c(t) := Id + tX is a smooth curve passing through Id, completely
contained in GL(n,R) for small values of t and with derivative at zero equal
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to ċ(0) = X (recall the computation of the differential of a smooth map in
terms of smooth curves). We are going to exploit the Leibniz formula for the
determinant. If we denote by Sn the symmetric group on n elements and by
ε(σ) the sign of a permutation σ ∈ Sn, we have

d

dt
|t=0 det(Id + tX) =

d

dt
|t=0

∑
σ∈Sn

ε(σ)(Id + tX)σ(1)1 . . . (Id + tX)σ(n)n =

=
d

dt
|t=0

∑
σ∈Sn

ε(σ)(δσ(1)1 + tXσ(1)1) . . . (δσ(n)n + tXσ(n)n),

where δij is the Kronecker symbol. It shoud be clear that we can write∑
σ∈Sn

ε(σ)(δσ(1)1 + tXσ(1)1) . . . (δσ(n)n + tXσ(n)n) = a0 + a1t+ t2q(t),

where a0, a1 ∈ R and q(t) ∈ R[t]. In particular, it holds

d

dt
|t=0

∑
σ∈Sn

ε(σ)(δσ(1)1+tXσ(1)1) . . . (δσ(n)n+tXσ(n)n) =
d

dt
|t=0(a0+a1t+t

2q(t)) = a1.

Everything boils down to compute the coefficient a1, that means the coef-
ficient in degree 1 of the polynomial

∑
σ∈Sn

ε(σ)(δσ(1)1 + tXσ(1)1) . . . (δσ(n)n +
tXσ(n)n). It should be clear that we have

a1 =
∑
σ∈Sn

n∑
i=1

ε(σ)δσ(1)1 . . . Xσ(i)i . . . δσ(n)n,

that means the in all the possible products above the only coefficient of the
matrix X appears with indices equal to (σ(i), i). The only non-vanishing term
is given when σ is the identity, otherwise at least one of the Kronecker symbol
is equal to zero. Hence we have

a1 =
∑
σ∈Sn

n∑
i=1

ε(σ)δσ(1)1 . . . Xσ(i)i . . . δσ(n)n =

n∑
i=1

Xii = tr(X).

Then we obtained

(DId det)(X) = a1 = tr(X),

and we are done.

Exercise 5
Compute explicitly the Lie algebra of the group O(p, q) for every p, q.

Solution: Denote by n := p+ q. Recall that the definition of the group O(p, q)
is given by

O(p, q) = {X ∈ GL(n,R)|tXIp,qX = Ip,q}.
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To compute the Lie algebra associated to O(p, q) we are going to realize this
group as a fiber of a suitable constant rank map. We define

F : GL(n,R)→ GL(n,R), F (X) := tXIp,qX.

Clearly F is smooth since it can be expressed as a polynomial functions of
the coordinates of the matrixX. Additionally, by definition we have F−1(Ip,q) =
O(p, q). We are going to prove that the map F has constant rank. Let X be
any element in GL(n,R) and let Y be any tangent vector at X (that means
Y ∈M(n,R)). Using the usual definition of the differential in terms of smooth
curves we have

(DXF )(Y ) =
d

ds
|s=0F (X + sY ) =

d

ds
|s=0(t(X + sY )Ip,q(X + sY )) =

=
d

ds
|s=0(tXIp,qX + s(tXIp,qY + tY Ip,qX) + s2(tY Ip,qY )) =

=(tXIp,qY + tY Ip,qX) = tX(Ip,qY X
−1 + t(X−1)tY Ip,q)X =

=tXDId(Y X−1)X.

From the equation above we deduce that the rank of F is constant and the
Lie algebra of O(p, q) is given by

o(p, q) = Lie(O(p, q)) = ker(DIdF ) = {X ∈M(n,R)|tXIp,q + Ip,qX = 0}.

Exercise 6
Let G,H be Lie groups with associated Lie algebras g, h. Verify that the Lie
algebra of the product G ×H is g× h where the bracket on the latter is given
by

[(X1, Y1), (X2, Y2)] := ([X1, X2], [Y1, Y2]),

where X1, X2 ∈ g and Y1, Y2 ∈ h.

Solution: We are going to denote by X(M) = Vect∞(M) the set of vector fields
over a generic manifold M .

We are going to denote by

iG : G→ G×H, iG(g) := (g, e)

and similarly
iH : H → G×H, iH(h) := (e, h).

In the same way, the differential of both maps induces inclusions

DeiG : TeG→ TeG× TeH, DeiG(u) := (u, 0)

and
DeiH : TeH → TeG× TeH, DeiG(v) := (0, v).

Recall that TeG× TeH is canonically isomorphic to TeG⊕ TeH as R-vector
spaces via the map which sends (u, v) to u + v, for every u ∈ TeG and every
v ∈ TeH. (In this way we get DeiG is simply the inclusion of TeG into TeG⊕TeH
and the same for DeiH). This means that every element w in T(e,e)(G×H) can
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be written uniquely as w = u+ v, where u ∈ TeG and v ∈ TeH, or equivalently
we can identify T(e,e)(G×H) with TeG⊕ TeH.

From the lecture, we know that there is a bijection between left-invariant
vector fields on G (resp. H) and vectors of the tangent space TeG (resp. TeH)
and the isomorphism is given by

LG : TeG→ X(G)G, LG(u) := uL

where the vector field uL is defined at the point g ∈ G as uLg := DeLg(u).
It should be clear that we have the following commutative diagram

TeG⊕ TeH

LG⊕LH

��

∼= // T(e,e)(G×H)

LG×H

��

X(G)G ⊕ X(H)H
∼= // X(G×H)G×H .

The diagram above is telling us that every (G×H)-left-invariant vector field
Z = wL, where w ∈ T(e,e)(G×H), can be uniquely written as Z = X+Y , where
X = uL (resp. Y = vL) where u ∈ TeG (resp. v ∈ TeH). Here the left-invariance
property has to be understood in G×H (that means that both uL and vL are
G×H left-invariant).

Take now Z1, Z2 ∈ X(G×H)G×H of the form Zi = wLi , where wi ∈ T(e,e)(G×
H) for i = 1, 2. By what we have said so far there exist unique ui ∈ TeG and
vi ∈ TeH such that wLi = uLi + vLi , for i = 1, 2. It holds

[Z1, Z2] =[wL1 , w
L
2 ] = [uL1 + vL1 , u

L
2 + vL2 ] =

=[uL1 , u
L
2 ] + [uL1 , v

L
2 ] + [vL1 , u

L
2 ] + [vL1 , v

L
2 ].

It is immediate to verify that for every [uL, vL] = 0 for any u ∈ TeG and
v ∈ TeH, hence we get

[wL1 , w
L
2 ] = [uL1 , u

L
2 ] + [vL1 , v

L
2 ],

which is exactly the Lie algebra structure given on the product, and we are
done.

Exercise 7
Show that Sp(2n,R)∩O(2n,R) and the group U(n) are isomorphic as Lie groups.

Solution: We fix the following notation

J2n =

(
0n −In
In 0n

)
,

where 0n and In denote the zero matrix and the identity matrix of order n,
respectively. Recall that there exists a suitable basis such that we can write

Sp(2n,R) = {g ∈ GL(2n,R)|tgJ2ng = J2n}.
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We are going to write g as a block matrix as it follows

g =

(
A B
C D

)
,

where A,B,C,D ∈ M(n,R). The condition of being a real symplectic matrix
gives us back the following equations

tCA = tAC, tDB = tBD, tAD − tCB = In. (1)

If now require that g is orthogonal, that means g ∈ O(2n,R), we get another
list of equations

tAA+ tCC = In,
tBB + tDD = In,

tAB + tCD = 0n. (2)

We set now
X := A+ iC, Y := B + iD.

It is easy to see that both X and Y are unitary. Let us check it for X

tX̄X = t(A− iC)(A+ iC) = (tAA+ tCC) + i(tAC − tCA) = In,

by both Equations (1) and Equations (2). In the same we get that Y is unitary.
In this way we constructed X,Y ∈ U(n). We are going to prove now that A = D
and C = −B. Indeed it holds

tX̄Y = t(A− iC)(B + iD) = (tAB + tCD) + i(tAD − tCB) = iIn,

again by both Equations (1) and Equations (2). In particular this means that
we have tX̄ = iY −1 and tX̄ = X−1 at the same time, and by uniquess it must
hold X = iY which means exactly A = D and C = −B. So we get that

g ∈ Sp(2n,R) ∩O(2n,R)⇔ g =

(
A −B
B A

)
,

where A,B ∈M(n,R) such that X := A+ iB ∈ U(n). Hence we can define

Φ : Sp(2n,R) ∩O(2n,R)→ U(n), Φ

(
A −B
B A

)
:= A+ iB,

and one can show that this is the desired isomorphism of Lie groups.
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