Exercise Sheet 5

Exercise 1

Show that $\mathfrak{so}(6,\mathbb{C}) \cong \mathfrak{sl}(4,\mathbb{C})$. (*Hint*: If dim V = 4 then dim $\Lambda^2 V = 6$.)

Solution: Consider the standard action of an element $g \in SL(4, \mathbb{C})$ on the vector space \mathbb{C}^4 , that means

$$g.v := gv, \quad v \in \mathbb{C}^4,$$

where gv is the standard multiplication rows-by-columns. This action determines an action on the space $\mathbb{C}^4 \otimes \mathbb{C}^4$ and hence on the space $\Lambda^2 \mathbb{C}^4$ given by

$$g.(u \wedge v) := gu \wedge gv, \quad u, v \in \mathbb{C}^4.$$

In this way we obtain a morphism $SL(4, \mathbb{C}) \to SL(6, \mathbb{C})$. We need to show that its image actually is contained in $SO(6, \mathbb{C})$.

The key point now is that $\Lambda^4 \mathbb{C}^4 \cong \mathbb{C}$ and if we fix the canonical basis $\mathcal{E} = \{e_1, e_2, e_3, e_4\}$ a generator is given by $e_1 \wedge e_2 \wedge e_3 \wedge e_4$. This allows us to define a symmetric bilinear form $B : \Lambda^2 \mathbb{C}^4 \times \Lambda^2 \mathbb{C}^4 \to \mathbb{C}$ as it follows. Consider $u_1 \wedge v_1, u_2 \wedge v_2 \in \Lambda^2 \mathbb{C}^4$. Since $\Lambda^4 \mathbb{C}^4$ is generated by $e_1 \wedge e_2 \wedge e_3 \wedge e_4$, we can define $B(u_1 \wedge v_1, u_2 \wedge v_2)$ to be the unique scalar for which it holds

 $u_1 \wedge v_1 \wedge u_2 \wedge v_2 = B(u_1 \wedge v_1, u_2 \wedge v_2)e_1 \wedge e_2 \wedge e_3 \wedge e_4.$

The function B defined above is a symmetric bilinear form which is nondegenerate (you can express the associated matrix in the basis $\Lambda^2 \mathcal{E} = \{e_i \land e_j\}_{i < j}$ and check that the determinant is different from zero). In addition the SL(4, \mathbb{C})-action on $\Lambda^2 \mathbb{C}^4$ preserves B (you can check it on the elements on the basis since B is bilinear). Thus the representation SL(4, \mathbb{C}) \rightarrow SL(6, \mathbb{C}) has image contained in SO(6, \mathbb{C}), as desired. This is a smooth homomorphism whose kernel is equal to {Id, -Id}, hence it induces an isomorphism between the associated Lie algebras, as desired.

Exercise 2

Show that $\mathfrak{so}(4,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C}) \oplus \mathfrak{sl}(2,\mathbb{C})$.

Solution: Using the definition it is easy to verify that $SL(2, \mathbb{C}) = Sp(2, \mathbb{C})$ (see Exercise 4 below). This means that any $g \in SL(2, \mathbb{C})$ preserves the standard symplectic form given by

$$\omega(u,v) := {}^t u J_2 v, \quad J_2 = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right),$$

for every $u, v \in \mathbb{C}^2$.

By using the symplectic form ω we can define the following function

$$B: \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}, \quad B(u_1 \otimes v_1, u_2 \otimes v_2) = \omega(u_1, u_2)\omega(v_1, v_2).$$

The function B is a symmetric bilinear form which is non-degenerate. If we now consider the action of $\mathrm{SL}(2,\mathbb{C}) \times \mathrm{SL}(2,\mathbb{C})$ on $\mathbb{C}^2 \otimes \mathbb{C}^2$ given by $(g,h)(u \otimes v) := (gu \otimes hv)$ for every $g, h \in \mathrm{SL}(2,\mathbb{C}), u, v \in \mathbb{C}^2$, we get that this action preserves B. Hence we get a smooth homomorphism $\mathrm{SL}(2,\mathbb{C}) \times \mathrm{SL}(2,\mathbb{C}) \to \mathrm{SO}(4,\mathbb{C})$ whose kernel is $\{(\mathrm{Id},\mathrm{Id}),(-\mathrm{Id},-\mathrm{Id})\}$. The induced homorphism on the associated Lie algebras is the desired isomorphism.

Exercise 3

Show that $\mathfrak{so}(3,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C})$.

Solution: Recall that the Lie algebra

$$\mathfrak{sl}(2,\mathbb{C}) = \{ X \in M(2,\mathbb{C}) | \operatorname{tr}(X) = 0 \}$$

admits the following natural basis

$$H = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \quad E = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right), \quad F = \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}\right).$$

In the same way the Lie algebra

$$\mathfrak{so}(3,\mathbb{C}) = \{ X \in M(3,\mathbb{C}) | {}^t X + X = 0 \}$$

has a natural basis given by $h_{ij} = E_{ij} - E_{ji}$ for i, j = 1, 2, 3 and i < j. Here E_{ij} denotes the matrix with 1 in the only entry of indices (i, j) and equal to zero elsewhere.

Define a map $\varphi : \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{so}(3,\mathbb{C})$ in the following way

$$\varphi(H) = -2ih_{13}, \ \varphi(E) = ih_{12} + h_{23}, \ \varphi(F) = -ih_{12} + h_{23}.$$
 (1)

It easy to verify that the map φ gives us the desired isomomorphism.

Exercise 4

Show that $\mathfrak{sp}(2,\mathbb{C}) \cong \mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{sp}(4,\mathbb{C}) \cong \mathfrak{so}(5,\mathbb{C})$.

Solution: It follows immediately by the definition that $\text{Sp}(2, \mathbb{C}) = \text{SL}(2, \mathbb{C})$ and from this it follows the isomorphism between the associated Lie algebras (they are the same).

We move now to $\operatorname{Sp}(4, \mathbb{C})$. Consider the standard action of $\operatorname{Sp}(4, \mathbb{C})$ on $\Lambda^2 \mathbb{C}^4$ (the same defined in Exercise 1) and the same bilinear form B. Since $\operatorname{Sp}(4, \mathbb{C}) < \operatorname{SL}(4, \mathbb{C})$ we get that any $g \in \operatorname{Sp}(4, \mathbb{C})$ preserves B. If \mathcal{E} denotes the canonical basis of \mathbb{C}^4 , since g preserves the standard symplectic form on \mathbb{C}^4 , it must fixes the element

$$\sigma := e_1 \wedge e_3 + e_2 \wedge e_4 \in \Lambda^2 \mathbb{C}^4.$$

It easy to see that $B(\sigma, \sigma) \neq 0$. This means that the Sp(4, \mathbb{C})-action preserves the decomposition

$$\Lambda^2 \, \mathbb{C}^4 = \langle \sigma \rangle \oplus \langle \sigma \rangle^\perp$$

and also the restriction of B to $\langle \sigma \rangle^{\perp}$. This implies that we get a smooth homomorphism $\operatorname{Sp}(4, \mathbb{C}) \to \operatorname{SO}(5, \mathbb{C})$ which induces the desired isomorphism between the associated Lie algebras.

ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	November 22, 2018

Exercise 5

Let M be a smooth manifold and let X, Y be two complete vector fields on M. Prove that the following are equivalent

- The vector fields commute at every point of M, that is [X, Y] = 0.
- If we denote by $\Phi^X : \mathbb{R} \times M \to M$ (resp. Φ^Y) the flow associated to the vector field X (resp. Y) it holds $\Phi^X_t \circ \Phi^Y_s = \Phi^Y_s \circ \Phi^X_t$ for every $t, s \in \mathbb{R}$.

Solution: We are going to prove only one direction. Assume that the flows commute, that means

$$\Phi^X_t \circ \Phi^Y_s = \Phi^Y_s \circ \Phi^X_t$$

for every $t, s \in \mathbb{R}$. We are going to show that $[X, Y]_p = 0$ at every point $p \in M$. By definition recall that it holds

$$\begin{cases} \Phi_t^X(p) = p\\ \frac{d}{dt}|_{t=0} \Phi^X(t) = X_{\Phi_t^X(p)}, & \text{for every } t \in \mathbb{R}. \end{cases}$$
(2)

This is a complicated way to say that Φ_t^X is the unique integral curve associated to X and passing through p a time t = 0. We are going to use Equation (2) to compute Xf for any smooth function f on M.

Let $f \in C^{\infty}(M)$. For every point $p \in M$ the value (Xf)(p) can be computed as it follows

$$(Xf)(p) = \frac{d}{dt}|_{t=0} (f \circ \Phi_t^X(p)).$$

In the same way it holds

$$(Y(Xf))(p) = \frac{d}{ds}|_{s=0}((Xf) \circ \Phi_s^Y(p)) = \frac{d}{ds}|_{s=0}\frac{d}{dt}|_{t=0}(f \circ \Phi_t^X \circ \Phi_s^Y(p)).$$
(3)

If we now exchange the role of X and Y in the computation above we get

$$(X(Yf))(p) = \frac{d}{dt}|_{t=0}((Yf) \circ \Phi_t^X(p)) = \frac{d}{dt}|_{t=0}\frac{d}{ds}|_{s=0}(f \circ \Phi_s^Y \circ \Phi_t^X(p)).$$
(4)

By Schwarz theorem and by the commutativity of the flows we get

$$0 = X(Yf)(p) - Y(Xf)(p) = ([X, Y](f))(p)$$

for every $p \in C^{\infty}(M)$. Since $f \in C^{\infty}(M)$ was arbitrary, it must hold $[X, Y]_p = 0$ for every $p \in M$ and the claim follows.