ETH Zürich	D-MATH	Introduction to Lie grous
Prof. Dr. Marc Burger	Alessio Savini	December $6, 2018$

Exercise Sheet 6

Exercise 1

Let G be a Lie group and let H < G be a closed subgroup. Show that G/H admits a structure of smooth manifold such that the natural action

$$\theta: G \times G/H \to G/H, \quad \theta(g, xH) = gxH$$

is smooth and the map

$$p: G \to G/H, \quad p(g) = gH$$

is a smooth fibration.

Exercise 2

Let \mathcal{H}_{n+1} the space of homogeneous polynomials in the variables X, Y of degree equal to n with complex coefficients. Define a representation

 $\pi_{n+1} : \mathrm{SL}(2,\mathbb{R}) \to \mathrm{GL}(\mathcal{H}_{n+1}), \quad (\pi_{n+1}(g)P)(X,Y) := P(g^{-1}(X,Y)),$

where $g^{-1}(X, Y) := g^{-1} \begin{pmatrix} X \\ Y \end{pmatrix}$.

Compute the set of weights of $\pi_{n+1}|_B$, where

$$B := \left\{ \left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array} \right) | a > 0, b \in \mathbb{R} \right\}.$$

Which are the associated weight spaces?

Exercise 3

Show that a connected Lie group is abelian if and only if its Lie algebra \mathfrak{g} is abelian using Lemma II.59(*i*) applied to the adjoint representation.

Exercise 4

Let \mathcal{L} be a finite dimensional \mathbb{R} -vector space and let $\Gamma < \mathcal{L}$ be a discrete subgroup. Show that there exist e_1, \ldots, e_r linearly independent in \mathcal{L} such that

$$\Gamma = \mathbb{Z} e_1 + \ldots + \mathbb{Z} e_r.$$