1 Exercise Sheet 1

Remark. Given a topological space, unless otherwise stated, the σ -algebra taken into account will always be the Borel σ -algebra.

Exercise 1.1. Given two probability measures $\mu, \nu \in \mathscr{P}(\mathbb{R})$ such that μ has no atoms, prove that there exists a nondecreasing function $T : \mathbb{R} \to \mathbb{R}$ pushing μ into ν , i.e. $T_{\#}\mu = \nu$ $(\mu(T^{-1}(B)) = \nu(B)$ for all $B \in \mathscr{B}(\mathbb{R}))$.

Show that the assumption that μ does not have atoms is necessary.

Hint:

Start by showing the result when μ and ν are both nonatomic and their support is the whole real line \mathbb{R} . To do that, consider the cumulative distribution functions of the two measures.

Exercise 1.2. Find two probability measures $\mu, \nu \in \mathscr{P}(\mathbb{R})$ such that there is more than one¹ Borel map $T : \mathbb{R} \to \mathbb{R}$ such that $T_{\#}\mu = \nu$ which minimizes

$$\int_{\mathbb{R}} |x - T(x)| d\mu(x)$$

Definition. Let Z be a topological space and let $(\mu_n)_{n \in \mathbb{N}}$ be a sequence of measures on Z. We say that the sequence $(\mu_n)_{n \in \mathbb{N}}$ weakly converge to a measure μ on Z if

$$\int_{Z} f d\mu_n \xrightarrow{n \to \infty} \int_{Z} f d\mu$$

for all bounded continuous functions f.

Exercise 1.3 (Prokhorov's theorem). Let Z be a complete and separable metric space, then $\mathcal{F} \subset \mathscr{P}(Z)$ is sequentially relatively compact with respect to the weak topology if \mathcal{F} is equitight, i.e. for every $\epsilon > 0$ there exists $K \subset Z$ compact such that $\mu(Z \setminus K) < \epsilon$ for all $\mu \in \mathcal{F}$.

Hint:

- 1. Prove the result in the case of Z compact using Banach-Alaoglu-Bourbaki theorem.
- 2. Prove the result in its full generality exploiting the previous result. For doing that, take an exhaustion of Z by compact sets.

Remark. Actually Prokhorov's theorem states that the "if and only if" holds, namely \mathcal{F} is sequentially relatively compact with respect to the weak topology *if and only if* \mathcal{F} is equi-tight. However, for our aims, we are interested only in the aforementioned implication.

¹Here uniqueness should be understood in the μ -almost everywhere sense.