10 Exercise Sheet 10

Exercise 10.1. Consider the cost $c(x, y)=\lceil|x-y|\rceil$ (the ceiling function of the distance). Prove that, for every $\mu, \nu \in \mathscr{P}(\Omega)$ with $\mu \ll \mathscr{L}^{d}$ and $\Omega \subset \mathbb{R}^{d}$ compact, there exists an optimal transport plan for such a cost of the form $\gamma=\sum_{i=1}^{N} \gamma_{i}$, where each γ_{i} is induced by a transport map and $N \leq \operatorname{diam}(\Omega)+1$.

Hint:

Recall that we have proven the existence of an optimal map for the L^{∞}-cost.
Exercise 10.2. Find an example of two probability measures $\mu, \nu \in \mathscr{P}(\mathbb{R})$ with compact support and $\mu \ll \mathscr{L}^{1}$ such that there does not exist an optimal transport plan between μ and ν with respect to the cost $c(x, y)=\lfloor|x-y|\rfloor$ (the floor function of the distance).

Exercise 10.3. Find an example of two probability measures on \mathbb{R}^{d} for some $d>0$ such that there is more than one optimal transport map, with respect to the quadratic cost, pushing one into the other.

