## 2 Exercise Sheet 2

Remark. Given a Hilbert space $(X,\langle\cdot, \cdot\rangle)$, we will say that a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is good-convex ${ }^{2}$ if it is convex and lower-semicontinuous with respect to the weak topology ${ }^{3}$.

If you know nothing about lower-semicontinuity or weak topology, it's not a problem! Indeed a function is good-convex if and only if it is the supremum of a family of affine functions.

This fact is nontrivial and follows from Hahn-Banach theorem. If you still don't know functional analysis just take it for granted while solving the exercises.

Definition (Convex conjugate). Let $(X,\langle\cdot, \cdot\rangle)$ be a Hilbert space. Given a function $f: X \rightarrow$ $\mathbb{R} \cup\{+\infty\}$, we define its convex conjugate $f^{*}: X \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ as

$$
f^{*}(y):=\sup _{x \in X}\langle x, y\rangle-f(x)
$$

Exercise 2.1. Given two functions $f, g: X \rightarrow \mathbb{R} \cup\{+\infty\}$ such that $f, g \not \equiv+\infty$ and $f \leq g$, show that $g^{*} \leq f^{*}$. Show also that $f^{*}$ and $g^{*}$ are good-convex functions.

Exercise 2.2. Compute the convex conjugate of

1. $f(x)=\frac{1}{2}\langle x, x\rangle$;
2. $f(x)=\left\langle x, x_{0}\right\rangle$, where $x_{0} \in X$ is a fixed point;
3. a function $f$ defined by $f\left(x_{0}\right)=0$ and $f(x)=+\infty$ for $x \neq x_{0}$, where $x_{0} \in X$ is a fixed point;
4. $f(x)=\frac{1}{p}|x|^{p}$ if $X=\mathbb{R}$ and $1<p<\infty$.

Exercise 2.3. Let $(X,\langle\cdot, \cdot\rangle)$ be a Hilbert space and let $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ be a good-convex function such that $f \not \equiv+\infty$. Prove that $\left(f^{*}\right)^{*}=f$.

## Hint:

1. Show that $f^{*}$ is the smallest function such that $f(x)+f^{*}(y) \geq\langle x, y\rangle$ and deduce $\left(f^{*}\right)^{*} \leq f$;
2. Exploiting point 2 and 3 of exercise 2.2 , show that $\left(f^{*}\right)^{*} \geq f$.

Definition (Subdifferential). Let $(X,\langle\cdot, \cdot\rangle)$ be a Hilbert space. Given a function $f: X \rightarrow$ $\mathbb{R} \cup\{+\infty\}$ and a point $x \in X$ such that $f(x) \in \mathbb{R}$, we define the subdifferential of $f$ at $x$ as the set

$$
\partial f(x):=\left\{y \in X: f\left(x^{\prime}\right) \geq f(x)+\left\langle y, x^{\prime}-x\right\rangle \quad \forall x^{\prime} \in X\right\}
$$

Exercise 2.4. If $f: X \rightarrow \mathbb{R}$ is a convex $C^{1}$ function, prove that $\partial f(x)=\{\nabla f(x)\}$.
Exercise 2.5. Given a Hilbert space $(X,\langle\cdot, \cdot\rangle)$ and a function $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$, prove that

1. $\partial f(x)$ is convex and closed (possibly empty);

[^0]2. $y \in \partial f(x)$ if and only if $f(x)+f^{*}(y)=\langle x, y\rangle$;
3. If $f$ is good-convex and $f \not \equiv+\infty$, then $y \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(y)$.

Exercise 2.6 ( $\star$ ). Consider a strictly convex $C^{1}$ function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

$$
\lim _{|x| \rightarrow \infty} \frac{f(x)}{|x|}=+\infty
$$

Prove that $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijection and $f(x)+f^{*}(y)=\langle x, y\rangle$ if and only if $\nabla f(x)=y$.


[^0]:    ${ }^{2}$ This name is not standard in literature.
    ${ }^{3}$ Actually, it is equivalent to ask the lower-semicontinuity in the strong topology. Indeed, a convex function is weak lower-semicontinuous if and only if it is strongly lower-semicontinuous.

