4 Exercise Sheet 4

Exercise 4.1 (Rademacher's theorem). Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a Lipschitz continuous function. Prove that f is differentiable \mathscr{L}^{d}-almost everywhere.

Hint:

1. Using Riesz theorem, prove that there exists a weak gradient of f, namely there exists an L^{∞}-function $\tilde{\nabla} f=\left(\tilde{\partial}_{1} f, \ldots, \tilde{\partial}_{d} f\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that

$$
\int_{\mathbb{R}^{d}} f \partial_{i} g d x=-\int_{\mathbb{R}^{d}} \tilde{\partial}_{i} f g d x
$$

for all $g \in C_{c}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ and for all $i=1, \ldots, d$. Here with $\partial_{i} g$ we denote the classical derivative of g with respect to the coordinate x_{i}.
To do this, use that $\partial_{i} g$ is a limit of incremental ratios.
2. Let $x_{0} \in \mathbb{R}^{d}$ be a Lebesgue point for $\tilde{\nabla} f$ and call $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ the linear map such that

$$
f_{B_{r}\left(x_{0}\right)}|\tilde{\nabla} f-A| d x \rightarrow 0
$$

as $r \rightarrow 0$, which exists by definition of Lebesgue point.
3. Show that the sequence of functions $f_{r}(y)=\left(f\left(x_{0}+r y\right)-f\left(x_{0}\right)\right) / r$ admits a uniformly convergent subsequence to a function f_{0} in $\overline{B(0,1)}$.
4. Prove that the weak gradients $\tilde{\nabla} f_{r}$ converge to A in $L^{1}\left(B(0,1), \mathbb{R}^{d}\right)$ as $r \rightarrow 0$.
5. Show that $f_{0}=A$ in $B(0,1)$ and deduce that A is the classical gradient of f at x_{0}.

Exercise 4.2. Consider n red points P_{1}, \ldots, P_{n} and n blue points Q_{1}, \ldots, Q_{n} on the plane. Assume that these $2 n$ points are distinct and there are no 3 collinear points.

Show that it is possible to connect each red point to a distinct blue point with a segment in such a way that these segments do not intersect each other. Namely, there exists a permutation $\sigma \in S_{n}$ such that the segment $P_{i} Q_{\sigma(i)}$ does not intersect the segment $P_{j} Q_{\sigma(j)}$ for any $i \neq j$.

