5 Exercise Sheet 5

Exercise 5.1. Solve again exercises 3.1 and 3.2 using the sufficient condition for the optimality of a transport map with respect to the quadratic cost.

Exercise 5.2. Show that the nondecreasing map $T: \mathbb{R} \rightarrow \mathbb{R}$ constructed in exercise 1.1 is optimal with respect to the quadratic cost.

Exercise 5.3. Find the optimal transport map for the quadratic cost $c(x, y)=\frac{1}{2}|x-y|^{2}$ between $\mu=f \cdot \mathscr{L}^{2}$ and $\nu=g \cdot \mathscr{L}^{2}$ in \mathbb{R}^{2}, where $f(x)=\frac{1}{\pi} \chi_{B(0,1)}(x)$ and $g(x)=\frac{1}{8 \pi}(4-$ $\left.|x|^{2}\right) \chi_{B(0,2)}(x)$.

Exercise 5.4. Let $S: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be given by $S(x)=-x$. Characterize the probabilities $\mu \in \mathcal{P}\left(\mathbb{R}^{d}\right)$ with $\int_{\mathbb{R}^{d}}|x|^{2} d \mu<+\infty$ such that S is an optimal transport map between μ and $S_{\#} \mu$ for the quadratic cost.

