8 Exercise Sheet 8

Exercise 8.1. Find two probability measures $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{n}\right)$ such that there exists a map (or a plan) from μ to ν that is optimal for the linear cost but not for the quadratic cost.

Exercise 8.2. Find two probability measures $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{n}\right)$ such that there exists a map (or a plan) from μ to ν that is optimal for the quadratic cost but not for the linear cost.

Exercise 8.3. Let $\mu, \nu \in \mathscr{P}\left(\mathbb{R}^{n}\right)$ be a pair of probability measures. Show that if μ and ν are supported on a compact set, then

$$
\lim _{p \rightarrow 1} W_{p}(\mu, \nu)=W_{1}(\mu, \nu)
$$

Show a counterexample to the previous statement if we drop the assumption that μ and ν are supported on a compact set.

Hint:
For the counterexample, set $\mu=\delta_{0}$ and find a measure ν such that $W_{p}(\mu, \nu)=\infty$ if $p>1$ and $W_{1}(\mu, \nu)$ is finite.

