9 Exercise Sheet 9

Exercise 9.1. Find the optimal transport map for the linear cost $c(x, y)=|x-y|$ between $\mu=f \cdot \mathscr{L}^{2}$ and $\nu=g \cdot \mathscr{L}^{2}$ in \mathbb{R}^{2}, where $f(x)=\frac{1}{\pi} \chi_{B(0,1)}(x)$ and $g(x)=\frac{1}{8 \pi}\left(4-|x|^{2}\right) \chi_{B(0,2)}(x)$.

Hint:

Recall exercise 5.3 and use the potential $u(x)=-|x|$.
Exercise 9.2. Let $\mu=\frac{1}{\pi} \chi_{B(0,1)} \mathcal{L}^{2}$ be the uniform probability measure on $B(0,1) \subset \mathbb{R}^{2}$ and let $p_{0}=(1,0), p_{1}=(2,0)$ be two fixed points in \mathbb{R}^{2}. Describe the optimal transport map between μ and $\frac{1}{2}\left(\delta_{p_{0}}+\delta_{p_{1}}\right)$ in the following two cases:
(a) when the cost is $c(x, y)=\frac{1}{2}|x-y|^{2}$;
(b) when the cost is $c(x, y)=|x-y|$.

Hint:

Exploit that the graph of an optimal map is c-cyclically monotone.

