D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 0

This exercise sheet treats topics from point set topology which will be useful in the course and which you might already know. In particular, it contains a proof of the general case of Tychonoff's Theorem using ultrafilters.

- 1. (Initial topologies and examples). Let X be a set, let \mathcal{I} be an index set and assume that for any $\iota \in \mathcal{I}$ a topological space X_{ι} and a map $f_{\iota} : X \to X_{\iota}$ is given.
 - a) Show that there is a smallest topology on X containing all sets of the form $f_{\iota}^{-1}(U_{\iota})$ where $U_{\iota} \subset X_{\iota}$ is open. This topology on X is called the *initial topology* induced by the maps f_{ι} for $\iota \in \mathcal{I}$ and is the smallest topology which makes all maps f_{ι} continuous.

We now illustrate this notion in an example.

b) Let $X = \prod_{\iota \in \mathcal{I}} X_{\iota}$. Then the initial topology induced by the projections $X \to X_{\iota}$ is called the *product topology* on X. Assume that \mathcal{I} is countable and that X_{ι} is metrizable¹ for any $\iota \in \mathcal{I}$. Show that X is metrizable.

HINT: The proof is contained in² Lemma A.17.

(Urysohn's lemma). Let X be a topological space. We say that X is normal if for any two disjoint closed sets A, B ⊂ X there are disjoint open sets U_A, U_B ⊂ X with U_A ⊃ A and U_B ⊃ B. If X is normal, Urysohn's lemma states that for any two disjoint closed subsets A, B of X there is a continuous function f : X → [0, 1] with f|_A ≡ 0 and f|_B ≡ 1.

Assume that X is metrizable and let d be a metric on X inducing the topology. For any non-empty subset $A \subset X$ and a point $x \in X$ define

$$d(x, A) = \inf\{d(x, a) : a \in A\}.$$

¹That is, there is a metric on X_{ι} which induces the given topology on X_{ι} .

²If not explicitly stated otherwise, we make reference to the book of Einsiedler and Ward *Functional analysis, Spectral theory, and Applications.*

For $A, B \subset X$ closed, non-empty and disjoint we consider the function

$$f: x \in X \mapsto \frac{\mathrm{d}(x, A)}{\mathrm{d}(x, A) + \mathrm{d}(x, B)}$$

Show that it satisifes all the properties required in Urysohn's lemma. Deduce that any metrizable topological space is normal.

REMARK: You can read up on the proof of the general case of Urysohn's lemma in Section A.5.

In the following three exercises we would like to discuss *Tychonoff's Theorem* which states the following. Let $(X_{\iota})_{\iota \in \mathcal{I}}$ be a collection of topological spaces. Then the product space $\prod_{\iota \in \mathcal{I}} X_{\iota}$ is compact if and only if X_{ι} is compact for any $\iota \in \mathcal{I}$.

3. (A special case) Show that a countable product of metrizable compact topological spaces is also compact.

HINT: You may use that a metrizable space is compact if and only if it is sequentially compact.

In the general situation one useful replacement for sequences is given by filters³. Recall that a *filter* on a topological space X is a subset $\mathcal{F} \subset \mathcal{P}(X)$ with the following properties: (i) $\emptyset \notin \mathcal{F}$, (ii) $F_1, F_2 \in \mathcal{F} \implies F_1 \cap F_2 \in \mathcal{F}$ and (iii) $F \in \mathcal{F}, B \supset F \implies B \in \mathcal{F}$. For instance, the set of neighborhoods \mathcal{U}_x of a point $x \in X$ is a filter. We say that a filter \mathcal{F} on X converges to $x \in X$ if $\mathcal{U}_x \subset \mathcal{F}$.

- 4. (More about filters) Let X be a topological space.
 - a) Let $(x_n)_n$ be a sequence in X. Show that

 $\mathcal{F}_{\text{tail}} = \{ F \subset X : x_n \in F \text{ for all but finitely many } n \}$

is a filter on X and that $\mathcal{F}_{\text{tail}}$ converges to $x \in X$ if and only if $(x_n)_n$ converges to x. Thus, convergence of filters generalizes convergence of sequences.

A filter \mathcal{F} on X is an *ultrafilter* if it is maximal amongst all filter on X with respect to inclusion.

b) Show that a filter \mathcal{F} on X is an ultrafilter if and only if $A \in \mathcal{F}$ or $X \setminus A \in \mathcal{F}$ for any subset A of X. Conclude from this that an ultrafilter \mathcal{F} converges to $x \in X$ if $U \cap F \neq \emptyset$ for any $F \in \mathcal{F}$ and any neighborhood U of x.

³A very complete reference on filters (and nets) is P. Clark's short note *Convergence*. Here, we will only introduce as much as is needed to understand our proof of Tychonoff's Theorem.

- c) Let $f: X \to Y$ be a continuous map between topological spaces and let \mathcal{F} be an (ultra-)filter on X. Show that $f(\mathcal{F}) = \{B \subset Y : f(F) \subset B \text{ for some } F \in \mathcal{F}\}$ is an (ultra-)filter on Y and that $f(\mathcal{F})$ converges to f(x) if \mathcal{F} converges to $x \in X$.
- d) Show that any filter is contained in an ultrafilter.

HINT: Use Zorn's lemma.

5. (Proof of Tychonoff's Theorem)

a) Let X be a topological space. Show that X is compact if and only if every ultrafilter on X converges.

HINT: Assuming that X is compact find a point x in the intersection $\bigcap_{F \in \mathcal{F}} \overline{F}$ whenever \mathcal{F} is an ultrafilter on X. Conversely, if \mathcal{A} is a family of closed subsets with $A_1 \cap \ldots \cap A_n \neq \emptyset$ for any $A_1, \ldots, A_n \in \mathcal{A}$ consider the filter of subsets of X which contain a finite intersection of elements of \mathcal{A} .

b) Prove Tychonoff's Theorem.

NOTE: The vorxn-system is inactive for this exercise sheet and will be used from Exercise sheet 1 onward. If you wish to present an exercise nevertheless, write an e-mail to your assistant who will be able to give you one point for a presentation in the exercise class.