Functional analysis I

Exercise sheet 1

1. (Products). Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed vector spaces. Show that

$$||(v,w)||_{V\times W} = \max\{||v||_V, ||w||_W\}$$

for $(v, w) \in V \times W$ defines a norm $\|\cdot\|_{V \times W}$ on the product space $V \times W$.

- 2. (Norm equivalence via convergence). Let V be a vector space over \mathbb{R} or \mathbb{C} and let $\|\cdot\|$, $\|\cdot\|'$ be two norms on V. Show that $\|\cdot\|$ and $\|\cdot\|'$ are equivalent if and only if any sequence $(v_n)_n$ in V which converges to some $v \in V$ with respect to $\|\cdot\|$ also converges to v with respect to $\|\cdot\|'$ and conversely.
- 3. (Example of inequivalent norms). Let $C^1([0,1])$ be the space of continuous functions $f:[0,1] \to \mathbb{R}$ which have a continuous derivative f'. The C^1 -norm $\|\cdot\|_{C^1([0,1])}$ on $C^1([0,1])$ is given by

$$||f||_{C^1([0,1])} = \max\{||f||_{\infty}, ||f'||_{\infty}\}$$

for $f \in C^1([0,1])$.

- a) Show that the supremum norm $\|\cdot\|_{\infty}$ on $C^1([0,1])$ is inequivalent to the C^1 -norm.
- **b**) Verify that $||f||_0 = |f(0)| + ||f'||_{\infty}$ for $f \in C^1([0, 1])$ defines a norm on $C^1([0, 1])$ which is equivalent to $||\cdot||_{C^1([0, 1])}$.
- **4.** (ℓ^p -spaces). We define for any $p \ge 1$ the set of complex-valued sequences

$$\ell^{p}(\mathbb{N}) = \left\{ x = (x_{n})_{n} : \|x\|_{p} = \left(\sum_{n=1}^{\infty} |x_{n}|^{p}\right)^{\frac{1}{p}} < \infty \right\}.$$

In this exercise we would like to show that $\ell^p(\mathbb{N})$ is a vector space and that $\|\cdot\|_p$ defines a norm on it.

a) Prove Young's inequality $ab \leq \frac{a^p}{p} + \frac{b^q}{q}$ where $q \geq 1$ satisfies $1 = \frac{1}{p} + \frac{1}{q}$ and where $a, b \geq 0$.

b) Prove Hölder's inequality

$$\sum_{n=1}^{\infty} |x_n| |y_n| \le ||x||_p \cdot ||y||_q$$

for any $x \in \ell^p(\mathbb{N})$ and $y \in \ell^q(\mathbb{N})$.

c) Use b) to deduce the desired statement.

HINT: To prove the triangle inequality, start with an expression of the kind $\sum_{n=1}^{N} |x_n + y_n|^p$ and apply Hölder's inequality.

5. (Sums of subspaces). This exercise exhibits a "strange" phenomenon in a infinitedimensional normed vector space, which cannot be seen in finite-dimensional vector spaces. Consider the normed vector space $V = \ell^1(\mathbb{N}) \times \ell^1(\mathbb{N})$ (cf. Exercises 1 and 4) and the subspaces

$$V_1 = \ell^1(\mathbb{N}) \times \{0\}$$

$$V_2 = \{(x, y) \in V : ny_n = x_n \text{ for all } n \in \mathbb{N}\}$$

Show that V_1 and V_2 are closed and that $V_1 + V_2 = \{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$ is not closed.

6. (Norm with given unit ball). Let $B \subset \mathbb{C}^d$ be a non-empty, open, convex, bounded subset with the property that $\alpha B = B$ for any $\alpha \in \mathbb{C}$ of absolute value one. Show that there exists a norm on \mathbb{C}^d with (open) unit ball B.