D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 2

1. (Products and subspaces of Banach spaces).

- a) Let $(V, \|\cdot\|)$ be a Banach space and let W be a subspace. Show that $(W, \|\cdot\|)$ is a Banach space if and only if W is closed.
- **b)** Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed vector spaces and equip the product space $V \times W$ with the norm

$$||(v,w)||_{V\times W} = \max\{||v||_V, ||w||_W\}$$

for $(v, w) \in V \times W$ (see Exercise 1, Sheet 1). Then $(V \times W, \|\cdot\|_{V \times W})$ is a Banach space if and only if $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ are Banach spaces.

- 2. (Quotient topology). Let $(V, \|\cdot\|)$ be a normed vector space and let W be a closed subspace. Recall that the quotient topology for V/W (or more precisely the final topology for the quotient map $\pi: V \mapsto V/W, v \mapsto v + W$ is the finest (i.e. largest) topology on V/W for which π is continuous. Show that the quotient topology is the topology induced by the quotient norm $\|\cdot\|_{V/W}$ (cf. Lemma 2.15).
- **3.** (Achieving the quotient norm). In this exercise we would like to show that the infimum in the definition of the quotient norm need not be achieved. For this, consider V = C([-1, 1]) with the norm $\|\cdot\|_{\infty}$ and the subspace

$$W = \left\{ f \in C([-1,1]) : \int_{-1}^{0} f(x) \, \mathrm{d}x = \int_{0}^{1} f(x) \, \mathrm{d}x = 0 \right\}$$

- a) Show that W is a closed subspace.
- **b)** Let $f : x \in [-1, 1] \mapsto x$. Show that $||f + W||_{V/W} = \frac{1}{2}$.
- c) Show that the infimum for $||f+W||_{V/W}$ is not achieved, i.e. there is no continuous function $g \in W$ such that $||f + g||_{\infty} = \frac{1}{2}$.

Turn the page.

4. (Completion of a metric space). Let (X, d) be a metric space. A completion of a metric space (X, d) is a pair consisting of a complete metric space (X*, d*) and an isometry *ι* : X → X* with dense image. Show that such a completion exists.

HINT: One approach is to directly generalize the proof of Theorem 2.32. Alternatively, one can consider for some fixed $x_0 \in X$ the map $x \in X \mapsto f_x \in B(X)$ where B(X) is the Banach space of bounded, real-valued functions on X and $f_x : X \to \mathbb{R}$ is defined by $f_x(y) = d(x, y) - d(x_0, y)$ for $y \in X$.

5. (More on ℓ^p -spaces). For $1 \le p < \infty$ we define the normed vector spaces $(\ell^p(\mathbb{N}), \|\cdot\|_p)$ in Sheet 1. For $p = \infty$ we let

$$\ell^{\infty}(\mathbb{N}) = \{x = (x_n)_n \in \mathbb{R}^{\mathbb{N}} : (x_n)_n \text{ is bounded}\}$$

be the vector space of bounded sequences in \mathbb{R} and equip it with the norm given by $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$ for $x \in \ell^{\infty}(\mathbb{N})$.

- a) Read the proof of Example 2.24(7) and apply it to show that $(\ell^p(\mathbb{N}), \|\cdot\|_p)$ is a Banach space for any $1 \le p \le \infty$.
- **b**) Show that the closure in $\ell^{\infty}(\mathbb{N})$ of the subspace

 $c_c(\mathbb{N}) = \{x \in \mathbb{R}^{\mathbb{N}} : x_n = 0 \text{ for all but finitely many } n\}$

is the subspace $c_0(\mathbb{N}) = \{x \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n = 0\}$. Note in comparison that for any $1 \le p < \infty$ the subspace $c_c(\mathbb{N})$ is dense in $\ell^p(\mathbb{N})$.

c) Given p_1, p_2 with $1 \le p_1 < p_2 \le \infty$ prove the inequality $||x||_{p_1} \ge ||x||_{p_2}$ for all $x \in \ell^{p_1}(\mathbb{N})$.

HINT: You can assume without loss generality that $||x||_{p_1} = 1$.

- **d**) Show that $\ell^{p_1} \subsetneq \ell^{p_2}$ whenever $p_1, p_2 \in [1, \infty]$ satisfy $p_1 < p_2$.
- e) Show that the norms $\|\cdot\|_p$ restricted to $c_c(\mathbb{N})$ are pairwise inequivalent.
- f) Let $x \in \ell^q(\mathbb{N})$ for some $1 \leq q < \infty$. Prove that the limit $\lim_{p \to \infty} ||x||_p$ exists and is equal to $||x||_{\infty}$.
- 6. (Non-affine isometry). Find a non-linear isometry $\varphi : (\mathbb{R}, |\cdot|) \to (\mathbb{R}^2, \|\cdot\|_{\infty})$ with $\varphi(0) = 0$. Is this a contradiction to the theorem of Mazur and Ulam (Theorem 2.20)?