Exercise sheet 3

- 1. (Operator norm). Let $(V, \|\cdot\|_V), (W, \|\cdot\|_W)$ be two normed vector spaces and let $L : V \to W$ be linear. Show that L is a bounded operator if and only if it is Lipschitz-continuous and that in this case, $\|L\|_{op}$ is the smallest Lipschitz constant for L.
- 2. (Some explicit norms). Compute the operator norms of the following maps:
 - a) The inclusion $\varphi : C^1([0,1]) \to C([0,1])$ where $C^1([0,1])$ (resp. C([0,1]) is equipped with the norm $\|\cdot\|_{C^1([0,1])}$ from Exercise 3, Sheet 1 (resp. the norm $\|\cdot\|_{\infty}$).
 - **b**) The restriction φ_0 of φ to the subspace $\{f \in C^1([0,1]) : f(0) = 0\}$.
 - c) The inclusion $\psi : C([0,1]) \to L^1_m([0,1])$ where m is the Lebesgue measure on the interval [0,1].
 - **d**) The composition $\psi \circ \varphi_0$ of the maps in b) and c).
- **3.** (Two shift operators). Consider the Banach space $\ell^2(\mathbb{N})$ (cf. Sheets 1 and 2) of \mathbb{C} -valued 2-summable sequences and the shift operators

$$L_{\text{left}} : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), \quad x = (x_1, x_2, x_3, \ldots) \mapsto (x_2, x_3, x_4, \ldots)$$
$$L_{\text{right}} : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}), \quad x = (x_1, x_2, x_3, \ldots) \mapsto (0, x_1, x_2, \ldots).$$

- a) Show that $||L_{left}||_{op} = 1$ and that L_{left} is not an isometry. Compute the eigenvalues of L_{left} .
- **b**) Compute the eigenvalues of L_{right} .
- 4. (Inequivalent norms on polynomials). Given a compact, infinite subset $K \subset \mathbb{R}$ we define a norm¹ $\|\cdot\|_K$ on the polynomial ring $\mathbb{R}[x]$ via $\|p\|_K = \|p|_K\|_{C(K)}$. Show that for any two distinct compact, infinite subsets $K, L \subset \mathbb{R}$ the norms $\|\cdot\|_K, \|\cdot\|_L$ are inequivalent.

Turn the page.

¹This is indeed a norm and not only a semi-norm as any non-trivial polynomial has only finitely many zeros.

5. (Compact subsets of ℓ^p). Let $p \in [1, \infty)$ Show that a subset $A \subset \ell^p(\mathbb{N})$ is compact (with respect to the $\|\cdot\|_p$ -norm induced topology) if and only if it is closed, bounded and has uniformly small tails i.e. for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that for all $x \in A$

$$\sum_{n=N}^{\infty} |x_n|^p < \epsilon.$$

Can you find and prove a similar statement characterizing compact subsets of $c_0(\mathbb{N})$?

6. (Arzela-Ascoli on locally compact spaces). Let (X, d) be a locally compact metric space and let C₀(X) be the set of continuous functions vanishing² at ∞. (If you wish, you may also just consider X = ℝ with the standard metric.) The vector space C₀(X) is a closed subset of C_b(X) and thus a Banach space when equipped with the norm ||·||_∞. Extend the theorem of Arzela-Ascoli to describe the compact subsets of C₀(X).

²That is, $f \in C_0(X)$ if for any $\epsilon > 0$ there is a compact set $K \subset X$ such that $|f(x)| < \epsilon$ for all $x \notin K$.