Functional analysis I

Exercise sheet 4

- 1. (Continuity of the inner product). Let V be a vector space (over \mathbb{R} or \mathbb{C}) and let $\langle \cdot, \cdot \rangle$ be an inner product on V. Show that $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ (or \mathbb{C}) is a continuous map with respect to the norm topology (where the norm is induced by the inner product).
- 2. (Non-unique approximation). In each of the following cases find a Banach space $(V, \|\cdot\|)$, a non-empty closed convex subset $K \subset V$ and a point $v_0 \in V \setminus K$ that satisfy the required properties.
 - a) There are several points $k \in K$ with $||v_0 k|| = \inf_{k' \in K} ||v_0 k'||$.
 - **b)** There is *no* point $k \in K$ with $||v_0 k|| = \inf_{k' \in K} ||v_0 k'||$.
- **3.** (**Polarization-identity**). In this exercise we discuss to which extent an inner product is determined by the norm it induces.
 - a) Let $(V, \langle \cdot, \cdot \rangle)$ be a real inner product space. Prove that for all $v, w \in V$

$$\langle v, w \rangle = \frac{1}{4} (\|v+w\|^2 - \|v-w\|^2).$$

b) Let $(V, \langle \cdot, \cdot \rangle)$ be a complex inner product space. Prove that for all $v, w \in V$

$$\langle v, w \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||v + i^{k}w||^{2}.$$

- c) Let $(V, \|\cdot\|)$ be a real normed vector space and assume that the norm satisfies the parallelogram identity (cf. page 74). Find an inner product on V which induces the norm $\|\cdot\|$.
- 4. (Hardy-space). Let D ⊂ C be the open unit disc and let p ∈ [1,∞). Let V be the vector space of functions f ∈ C(D) whose restriction f|_D is holomorphic. For any r ∈ (0,1) we parametrize with γ_r : [0,1] → C, t ↦ re^{2πit} the circle of radius r around zero. Define for any f ∈ V

$$||f||_{H^p(D)} = \sup_{r \in (0,1)} \left(\int_0^1 |f(\gamma_r(t))|^p \, \mathrm{d}t \right)^{\frac{1}{p}}.$$

Turn the page.

- a) Explain briefly why $\|\cdot\|_{H^p(D)}$ is a (well-defined) norm on V. The completion $H^p(D)$ of V with respect to this norm is a *Hardy-space* on the unit disc.
- **b)** Show that for any $z \in D$ the map $f \in V \mapsto f(z) \in \mathbb{C}$ is continuous (with respect to the norm $\|\cdot\|_{H^p(D)}$ on V. Moreover, verify that for any open set $O \subset D$ with $\overline{O} \subset D$ the map

$$f \in V \mapsto f|_{\overline{O}} \in C(\overline{O})$$

is continuous.

c) Conclude from b) that there exists an injective linear map $H^p(D)$ into the space of holomorphic functions on D.

HINT: You may either use the general Hölder inequality (Theorem B.15) or restrict to the special case $p \in \{1, 2\}$.

- 5. (Clarkson's inequality and uniform convexity of L^p). Let (X, \mathcal{B}, μ) be a measure space and let $p \in [2, \infty)$.
 - a) Show that

$$\left\|\frac{f+g}{2}\right\|_{L^p_{\mu}(X)}^p + \left\|\frac{f-g}{2}\right\|_{L^p_{\mu}(X)}^p \le \frac{1}{2}\left(\|f\|_{L^p_{\mu}(X)}^p + \|g\|_{L^p_{\mu}(X)}^p\right)$$

for $f, g \in L^p_\mu(X)$.

HINT: Show first that $a^p + b^p \leq (a^2 + b^2)^{\frac{p}{2}}$ for a, b > 0.

- **b**) Prove that $L^p_{\mu}(X)$ is uniformly convex.
- c) Explain why $L^1_{\mu}(X)$ and $L^{\infty}_{\mu}(X)$ are not uniformly convex in general.

REMARK: Note that the spaces $L^p_{\mu}(X)$ for $p \in (1,2)$ are also uniformly convex, which requires a generalization of Clarkson's inequality. This uniform convexity can be used to show that in most cases an isometric isomorphism between $L^1_{\mu}(X)$ and $L^p_{\mu}(X)$ does not exist.

6. (Convolution on ℓ^1). Show that the Banach space

$$\ell^{1}(\mathbb{Z}) = \left\{ x = (x_{n})_{n \in \mathbb{Z}} : \|x\|_{1} = \sum_{n \in \mathbb{Z}} |x_{n}| < \infty \right\}$$

forms a commutative unital Banach algebra when equipped with the convolution $(x, y) \mapsto x * y$ given by $(x * y)_k = \sum_{j \in \mathbb{Z}} x_j y_{k-j}$ for all $k \in \mathbb{Z}$.