Functional analysis I

D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 5

- (Dual Hilbert space). Use the Fréchet-Riesz Representation Theorem to show that if *H* is a Hilbert space, then *H*^{*} is also a Hilbert space, and exhibit a natural isometric isomorphism between *H* and (*H*^{*})^{*}.
- 2. (Haar measure on the torus). In this exercise we would like to construct a Haar measure on the *n*-torus Tⁿ = ℝⁿ/Zⁿ. For this, recall that one can identify functions Tⁿ → C with Zⁿ-invariant functions F : ℝⁿ → C on ℝⁿ (i.e. we require F(x+m) = F(x) for all m ∈ Zⁿ). Furthermore, f is continuous (measurable) if and only if F is continuous (measurable). We define a measure m on Tⁿ by requiring that

$$\int_{\mathbb{T}^n} f \, \mathrm{d}m = \int_{[0,1]^n} F \, \mathrm{d}m_{\mathbb{R}^n}$$

where $m_{\mathbb{R}^n}$ is the Lebesgue measure on \mathbb{R}^n and f, F are measurable and correspond to each other. Show that m is a Haar measure on \mathbb{T}^n .

3. (Counterexample to Fréchet-Riesz representation theorem). Consider the vector space $V = c_c(\mathbb{N})$ with the inner product given by the $\ell^2(\mathbb{N})$ -inner product. Notice that V is not complete as $c_c(\mathbb{N}) \subset \ell^2(\mathbb{N})$ is dense. Define the subspace

$$W = \left\{ x \in V : \sum_{n=1}^{\infty} \frac{x_n}{n} = 0 \right\}.$$

Show that W is closed and that the orthogonal complement W^{\perp} in V is trivial. Deduce that the bounded linear functional $L : x \in V \mapsto \sum_{n=1}^{\infty} \frac{x_n}{n}$ cannot be represented as $\langle \cdot, y \rangle$ for any $y \in V$.

4. (Lax-Milgram lemma). Let \mathcal{H} be a Hilbert space and let $B : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ (resp. to \mathbb{C}) be bilinear (resp. sesquilinear). Suppose that there is a constant M > 0 with the property that $|B(x, y)| \le M ||x|| ||y||$ for all $x, y \in \mathcal{H}$.

Turn the page.

a) Show that there exists a unique bounded linear operator $T: \mathcal{H} \to \mathcal{H}$ with

$$B(x,y) = \langle Tx,y \rangle$$

for all $x, y \in \mathcal{H}$.

- **b)** Assume additionally that *B* is *coercive* i.e. that there is a constant c > 0 such that $|B(x, x)| \ge c ||x||^2$ for all $x \in \mathcal{H}$. Prove that *T* is invertible in this case and that the inverse is also bounded with $||T^{-1}||_{\text{op}} \le \frac{1}{c}$.
- 5. (Integration against measurable functions). Let (X, \mathcal{B}, μ) be a σ -finite measure space and let ψ be a measurable function on X with the property that for any $g \in \mathcal{L}^2_{\mu}(X)$ the function ψg is integrable. Show that $\psi \in \mathcal{L}^2_{\mu}(X)$.

HINT: You may assume that ψ is non-negative or prove that it suffices to consider this case. Show by contradiction that the linear functional $g \in L^2_\mu(X) \mapsto \int_X \psi g \, d\mu$ is bounded.

6. (Mean ergodic theorem). Let \mathcal{H} be a Hilbert space and let $U : \mathcal{H} \to \mathcal{H}$ be a unitary operator. The mean ergodic theorem then states that for any $v \in \mathcal{H}$

$$\frac{1}{N}\sum_{n=0}^{N-1}U^nv \to P_Iv$$

holds as $N \to \infty$ where P_I is the orthogonal projection onto $I = \{v \in \mathcal{H} : Uv = v\}$ (which is a closed subspace). Prove this.

HINT: Show the theorem first for vectors in I and for vectors of the form Uw - w for $w \in \mathcal{H}$. Prove then that $\{Uw - w : w \in \mathcal{H}\}$ is dense in I^{\perp} .