Functional analysis I

Exercise sheet 7

1. (A symmetry for convolution). Let G be an abelian locally compact metric group and let π be a unitary representation on a Hilbert space \mathcal{H} . Show that for any $v, w \in \mathcal{H}$ and $f \in L^1(G)$

$$\langle v, f *_{\pi} w \rangle = \langle f^* *_{\pi} v, w \rangle$$

where $f^* \in L^1(G)$ is given by $f^*(g) = \overline{f(g^{-1})}$ for $g \in G$.

2. (The completeness assumption in Banach-Steinhaus). Consider the normed vector space $V = c_c(\mathbb{N}) \subset \ell^{\infty}(\mathbb{N})$ of finitely supported sequences equipped with the supremum norm and define bounded operators $T_n \in B(V)$ by

$$T_n(x) = (x_1, 2x_2, \dots, nx_n, 0, \dots).$$

Show that the family $\{T_n : n \in \mathbb{N}\}$ is pointwise bounded and that $\sup_{n \in \mathbb{N}} ||T_n||_{op}$ is infinite.

- **3.** (Direct sums of Hilbert spaces). For any $n \in \mathbb{N}$ let \mathcal{H}_n be a Hilbert space.
 - a) Show that

$$\bigoplus_{n\in\mathbb{N}}\mathcal{H}_n = \left\{ (v_n)_n : v_n \in \mathcal{H}_n \text{ for any } n \in \mathbb{N} \text{ and } \sum_{n=1}^{\infty} \|v_n\|_{\mathcal{H}_n}^2 < \infty. \right\}$$

is a Hilbert space when equipped with the inner product given by

$$\langle (v_n)_n, (w_n)_n \rangle = \sum_{n=1}^{\infty} \langle v_n, w_n \rangle_{\mathcal{H}_n}$$

b) Suppose that the Hilbert spaces \mathcal{H}_n are subspaces of a Hilbert space \mathcal{H} (so that the inner products are compatible) and that $\mathcal{H}_m \perp \mathcal{H}_n$ for all $m \neq n$. Show that the closed linear hull of all \mathcal{H}_n for $n \in \mathbb{N}$ in \mathcal{H} is isomorphic to $\bigoplus_{n \in \mathbb{N}} \mathcal{H}_n$ as a Hilbert space (i.e. there is an isomorphism which preserves the inner product).

- 4. (The dihedral group). Consider the dihedral group D_3 which is the group of isometries of an equilateral triangle in the plane centered at zero. Note that D_3 is generated by a rotation r by 120°-degrees and a reflection s which satisfy $r^3 = s^2 = 1$ and $srs^{-1} = r^{-1}$. We let H be the subgroup generated by r.
 - a) Describe the characters on D_3 and show that they do not separate points. HINT: The subgroup H is normal.
 - **b**) Let π be a unitary representation of D_3 on a Hilbert space \mathcal{H} . Restricting π to H we may apply Theorem 3.80. Denote by χ the character $H \to \mathbb{S}^1$, $r^k \mapsto e^{2\pi i k/3}$. Show that

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_{\gamma} \oplus \mathcal{H}_{\gamma^2}.$$

Can you give a quick independent argument for this?

- c) Prove that the unitary operator π_s maps \mathcal{H}_1 to itself, \mathcal{H}_{χ} to \mathcal{H}_{χ^2} and \mathcal{H}_{χ^2} to \mathcal{H}_{χ^1} .
- 5. (More on the Banach algebra $\ell^1(\mathbb{Z})$). Find a continuous injective algebra homomorphism $\ell^1(\mathbb{Z}) \to C(\mathbb{T})$ where $C(\mathbb{T})$ is a Banach algebra when endowed with pointwise multiplication and where the Banach algebra $\ell^1(\mathbb{Z})$ was introduced in Sheet 4.
- 6. (Radial weights and pointwise convergence). Recall from the lecture (see also Corollary 3.89) that any function $f \in L^2(\mathbb{R}^2)$ can be written as $f = \sum_{n \in \mathbb{Z}} f_n$ where every $f_n = \overline{\chi_n} * f \in L^2(\mathbb{R}^2)$ has the property that

$$f_n(k_\vartheta v) = \mathrm{e}^{2\pi \mathrm{i} n\vartheta} f_n(v)$$

for almost all $v \in \mathbb{R}^2$ and all $\vartheta \in \mathbb{T}$. Here, $k_{\vartheta} = \begin{pmatrix} \cos(2\pi\vartheta) & -\sin(2\pi\vartheta) \\ \sin(2\pi\vartheta) & \cos(2\pi\vartheta) \end{pmatrix}$. In this exercise, we want to discuss pointwise convergence of $\sum_{n \in \mathbb{Z}} f_n$.

- **a**) Show that $f_n \in C(\mathbb{R}^2)$ for all $n \in \mathbb{N}$ whenever $f \in C(\mathbb{R}^2)$.
- **b)** Prove that the series $\sum_{n \in \mathbb{Z}} f_n$ converges uniformly on compact to the function f whenever $f \in C^1(\mathbb{R}^2)$.