Functional analysis I

D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 9

1. (Reflexivity of the dual). Let X be a Banach space. Show that X is reflexive if and only if X^* is reflexive. Conclude that $\ell^1(\mathbb{N})$ is not reflexive.

HINT: If X^* is reflexive, assume that there is a point ℓ in $X^{**} \setminus \iota(X)$ where $\iota : X \to X^{**}$ is the natural embedding. Then use a corollary of the Hahn-Banach theorem.

2. (Non-reflexivity of $L^1([0,1])$). Let m be the Lebesgue measure on the interval [0,1]. Recall that the dual pairing between $L^1_m([0,1])$ and $L^\infty_m([0,1])$ yields an isometric embedding $L^1_m([0,1]) \to L^\infty_m([0,1])^*$. Construct an element in $L^\infty_m([0,1])^*$ that is not in the image of this isometry.

HINT: Partition the interval into countably many subintervals and use the Banach-limit.

- 3. (Amenable groups). Recall that a discrete group G is *amenable* if and only if there exists a linear functional $M \in (\ell^{\infty}(G))^*$ of norm one with the following properties:
 - (i) $M(a) \ge 0$ whenever $a \in \ell^{\infty}(G)$ is real-valued with $a \ge 0$.
 - (ii) $M(a^g) = M(a)$ for all $a \in \ell^{\infty}(G)$ and $g \in G$ where $a^g(h) = a(g^{-1}h)$.

Show that the additive group \mathbb{Z}^n for any $n \in \mathbb{N}$ is amenable.

HINT: Imitate the proof of Corollary 7.14 and average over boxes.

- **4.** (Closed subspaces of reflexive spaces). Let *X* be a normed vector space and let *Y* be a closed subspace.
 - a) Show that there is a natural isometric isomorphism $Y^* \simeq X^*/Y^{\perp}$ where Y^{\perp} denotes the annihilator of Y as in Exercise 3, Sheet 8.
 - **b**) Prove that *Y* is reflexive if *X* is reflexive.
 - c) Show that $\ell^{\infty}(\mathbb{N})$ is not reflexive and deduce that $L^{\infty}_{\mu}(X)$ is not reflexive whenever (X, \mathcal{B}, μ) is a σ -finite measure space with no atoms.

Turn the page.

- 5. (On the σ -finiteness assumption). In this exercise we discuss the necessity of the σ -finiteness assumption in Proposition 7.34. Let X be an uncountable set and let \mathcal{B} be the σ -algebra of subsets $A \subset X$ for which either A or $X \setminus A$ is countable. Furthermore, let μ be the counting measure on X.
 - a) Show that for any function $f \in L^1_{\mu}(X)$ there are at most countably many points $x \in X$ with $f(x) \neq 0$.

HINT: Since there are no non-trivial null-sets for the measure μ , $L^1_{\mu}(X)$ does indeed consist of functions and not only equivalence classes of integrable functions. For any $n \in \mathbb{N}$ consider the set $\{x \in X : |f(x)| > \frac{1}{n}\}$.

- **b)** Given any function $f : X \to \mathbb{C}$ show that f is measurable if and only if there is a countable subset $A \subset X$ with the property that $f|_{X \setminus A}$ is constant.
- c) Let B(X) be the Banach space of bounded functions on X. Show that the dual pairing

$$L^1_\mu(X) \times B(X) \to \mathbb{C}, \quad (f,g) \mapsto \sum_{x \in X} f(x)g(x)$$

induces an isometric isomorphism $B(X) \simeq L^1_{\mu}(X)^*$. Note that by b) $L^{\infty}_{\mu}(X)$ is much smaller that B(X) and in particular the natural pairing does **not** identify $L^{\infty}_{\mu}(X)$ with $L^1_{\mu}(X)^*$.

6. (Complements of finite-dimensional subspaces). Let V be a finite dimensional subspace of a real normed vector space space X. Prove that there exists a closed subspace W of X with $X = V \oplus W$.