Functional analysis I

D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Exercise sheet 10

- 1. (Weak topology on finite-dimensional spaces). Let X be a finite-dimensional normed vector space. Show that the weak topology on X coincides with the norm topology on X.
- **2.** (**Riesz representation theorem the locally compact case**). Read the proof of the Riesz representation theorem in the locally compact case (Section 7.4.4) and explain the main ideas.
- **3.** (Weak convergence and continuous maps). Let X and Y be normed vector spaces and let $T : X \to Y$ be an operator.
 - a) Let $(x_n)_n$ be a weakly convergent sequence in X. Show that $(x_n)_n$ is bounded. HINT: Use a theorem from Chapter 4.
 - **b)** Show that T is bounded if and only if for any weakly convergent sequence $(x_n)_n$ in X with limit $x \in X$ we have weak convergence $Tx_n \to Tx$ in Y.
- 4. (Weak convergence in l¹(N)). In this exercise we show that weak convergence of sequences in l¹(N) coincides with strong convergence of sequences. Despite the result of this exercise, the weak topology on l¹(N) is strictly weaker than the norm topology. Suppose that weak convergence does not imply strong convergence.
 - a) Show there exists a sequence $(a^{(n)})_n$ in $\ell^1(\mathbb{N})$ such that $||a^{(n)}||_1 = 1$ for all n and such that $(a^{(n)})_n$ converges weakly to 0 as $n \to \infty$. Conclude that $a_k^{(n)} \to 0$ for all $k \in \mathbb{N}$.
 - **b)** Select recursively a subsequence $(a^{(n_j)})_j$ and a strictly increasing sequence $(K_j)_j$ of indices such that

$$\sum_{k=1}^{K_{j-1}} |a_k^{(n_j)}| \le \frac{1}{5} \quad \text{ and } \quad \sum_{i=K_j+1}^{\infty} |a_k^{(n_j)}| \le \frac{1}{5}.$$

Turn the page.

c) Let $b \in \ell^{\infty}(\mathbb{N})$ be such that $|b_k| = 1$ for all k and such that $a_k^{n_j} b_k = |a_k^{(n_j)}|$ holds for every j and for every k within the window $K_{j-1} < k \le K_j$. Show that

$$\left|\sum_{k=1}^{\infty} a_k^{(n_j)} b_k\right| \ge \frac{1}{5}$$

for every $j \in \mathbb{N}$ and deduce a contradiction.

5. (Unique ergodicity). Let X be a compact metric space and let $T : X \to X$ be a homeomorphism. A (Borel) measure μ on X is said to be *T*-invariant if¹ $T_*\mu = \mu$. Assume that there is only one *T*-invariant probability measure μ on X (in this case, we say that T is *uniquely ergodic*). Show that for any $x \in X$ the orbit of x equidistributes, that is,

$$\frac{1}{N}\sum_{n=0}^{N-1}f(T^nx) \to \int_X f \,\mathrm{d}\mu$$

as $N \to \infty$ for every $f \in C(X)$.

- 6. (Metrizability of the weak topology). Let X be an infinite-dimensional normed vector space. In this exercise we prove in particular that the weak topology on X is not metrizable.
 - a) Show that any non-empty open set in the weak topology is unbounded.
 - **b)** Show that the weak closure of the unit sphere $S = \{x \in X : ||x|| = 1\}$ is the closed unit ball $\overline{B_1^X} = \{x \in X : ||x|| \le 1\}$.
 - c) Prove that there no countable neighborhood basis of $0 \in X$ for the weak-topology and deduce that the weak topology on X is not metrizable.

HINT: Use the ideas of the proof of Lemma 8.13. By Exercise 2, Sheet 8 there is no countable Hamelbasis of X^* .

¹The pushforward measure $T_*\mu$ is defined by $T_*\mu(B) = \mu(T^{-1}(B))$ for every measurable $B \subset X$.