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1. (Differentiation as a closed operator). Show that the operator

∇ : H1(Td)→ (L2(Td))d, f 7→ (∂1f, . . . ,∂df)

is closed.

2. (Existence of weak derivatives). A function f ∈ L2(Td) is said to have an α-th
(L2-)weak derivative for α ∈ Nd

0 if there exists g ∈ L2(Td) such that∫
Td
ψ(x)g(x) dx = (−1)‖α‖1

∫
Td

(∂αψ)(x)f(x) dx (1)

holds for any test function ψ ∈ C∞(T). If it exists, such a weak derivative is unique.
Show that f ∈ Hk(T) for some k ∈ N if and only if all α-th weak derivatives for
α ∈ Nd

0 with ‖α‖1 ≤ k exist.

3. (Examples of weakly differentiable functions – I). Let f be a continuous piecewise1

C1-function on the torus T.

a) Show that the derivative f ′ (which is defined everywhere but at finitely many
points) satisfies (1).

b) Show that f ∈ H1(T).

4. (Examples of weakly differentiable functions – II). Let κ > 0 and δ ∈ (0, 1
2
).

Suppose that f : T→ R is a function which satisfies f(x) = xκ for x ∈ [0, δ], which
is smooth on (0, 1) and which is identically zero on [1 − δ, 1). Show that f ∈ H1(T)
if and only if κ > 1

2
.

1That is, a function with finitely many points where the derivative does not exists.



5. (Hölder continuous functions). Let f : T→ C be a function. We say that f is Hölder
continuous of exponent β ∈ R≥0 if

|f(x)− f(y)| ≤ |x− y|β

where the distance |x− y| is implicitly measured in the torus T. In particular, Hölder
continuous functions are continuous. The space of Hölder continuous functions of
exponent β is denoted by C0,β(T) and can be turned into a Banach space by equipping
it with the norm

‖f‖C0,β = ‖f‖∞ + sup
x,y∈T

|f(x)− f(y)|
|x− y|β

.

The aim of this exercise is to show that any function f ∈ H1(T) has a representative
which is Hölder continuous of exponent 1

2
.

a) (Morrey’s inequality) Show that for any f ∈ C∞(T) we have

|f(x)− f(y)| ≤ ‖f ′‖L2|x− y|
1
2 .

b) Apply a) to construct the canonical continuous embedding H1(T)→ C0, 1
2 (T).

c) Argue why any function f ∈ H1(T) has a representative which is Hölder conti-
nuous of exponent 1

2
.

HINT: For a) use the fundamental theorem of calculus. For b) and c) take a look at the proof of Theo-
rem 5.6.

6. (Examples and non-examples of compact operators).

a) Show that the inclusion map C(Td)→ L2(Td) is not compact.

b) LetU ⊂ Rd be open. Show that the inclusion mapCk+1
b (U)→ Ck

b (U) is compact
if U is bounded. On the other hand, show that the inclusion is not compact if
U = R.

HINT: If U is bounded, apply the theorem of Arzela-Ascoli.

c) Show that the inclusion H1(T)→ L2(T) is compact.

7. (Calkin algebra). Let X be a Banach space.

a) Show that the set of compact operators K(X) ⊂ B(X) is a two-sided ideal in
B(X).

HINT: This means that K(X) is a linear subspace of B(X) and that LT, TL ∈ K(X) for all
L ∈ K(X) and T ∈ B(X). The latter statement is the content of a lemma from the lecture.
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b) Show thatB(X)/K(X) becomes a Banach algebra when equipped with the mul-
tiplication (A + K(X))(B + K(X)) = AB + K(X) for all A,B ∈ B(X) and
with the quotient norm. This Banach algebra is called the Calkin algebra of X .

8. (Compact operators and the strong operator topology). In this exercise we would
like to show that a limit of a sequence of compact operators in the strong operator
topology does not need to be compact. For this, consider the Hilbert space `2(N). For
n ∈ N let en ∈ `2(N) be the sequence with (en)k = δnk for all k ∈ N and denote by
Pn the projection onto the closed subspace spanned by e1, . . . , en.

a) Show that Pn is a compact operator for every n ∈ N.

b) Prove that the sequence (Pn)n converges to the identity operator in the strong
operator topology and argue why the latter operator is not compact.

9. (An example of a Fredholm operator). LetX be a Banach space and letK : X → X
be a compact operator. Show that the image of the operator idX −K is closed.

10. (The adjoint operator). Let H be a Hilbert space and S, T : H → H be bounded
operators.

a) Show that (aS + bT )∗ = āS∗ + b̄T ∗ and (ST )∗ = T ∗S∗ for all a, b ∈ C.

b) Prove that im(T )⊥ = ker(T ∗) and ker(T )⊥ = im(T ∗).

c) Show that T is unitary (that is, T is surjective and an isometry) if and only if
T ∗T = TT ∗ = idH is satisfied.

11. (A spectral theorem for commuting operators). Let H be a separable (infinite-
dimensional) Hilbert space and let T1, T2 : H → H be two self-adjoint operators
with T1T2 = T2T1 (that is, T1 and T2 commute). Assume that T2 is compact with
ker(T2) = {0}. State and prove a spectral theorem in this situation.

12. (Green functions). Consider the continuous integral kernel

(s, t) ∈ [0, 1]2 7→ G(s, t) =

{
s(t− 1) if s ≤ t

t(s− 1) if t ≤ s

as well as the induced compact self-adjoint integral operator

K : L2([0, 1]2)→ C([0, 1]2) ⊂ L2([0, 1]2).



Compute all eigenvalues (and associated eigenfunctions) of K.

HINT: See Section 2.5.2.

NOTE: This exercise sheet will not be discussed in the exercise classes. However, the
topics it treats are an important part of the course and in particular relevant for the exam.


