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1. a) Let τ be the intersection of all topologies on X which contain the preimages
f−1ι (Uι) for any ι ∈ I and any open set Uι ⊂ Xι. Then τ is a topology on X and
satisifes all required properties.

b) See Lemma A.17.

2. Notice first that d(·, A) is a continuous function for anyA ⊂ X . Indeed, by the triangle
inequality we have that

d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a)

for any x, y ∈ X and a ∈ A. Thus, d(x,A) ≤ d(x, y) + d(y, A) and by symmetry of
the argument

|d(x,A)− d(y, A)| ≤ d(x, y)

for any x, y ∈ X . This shows that d(·, A) is 1-Lipschitz and in particular continuous.

Now assume that A ⊂ X is closed. Then d(x,A) = 0 if and only if x ∈ A. Surely, if
x ∈ A then 0 ≤ d(x,A) ≤ d(x, x) = 0. Conversely, if d(x,A) = 0 we may choose
for any k ∈ N an element ak ∈ A with d(x, ak) <

1
k
. In particular, d(x, ak) → 0 as

k →∞ i.e. (ak)k converges to x. As A is closed, x ∈ A.

Now let f be defined as in the exercise for two given non-empty closed disjoint subsets
A,B ⊂ X . The second of the above claims shows that f is well-defined as d(x,A) +
d(x,B) = 0 implies that x ∈ A ∩ B, which is empty. Furthermore, f is continuous
as the functions d(·, A), d(·, B) are continuous. It remains to show that f has the
properties in Tychonoff’s Theorem. For x ∈ A we have

f(x) =
0

0 + d(x,B)
= 0

and for x ∈ B we have

f(x) =
d(x,A)

d(x,A)
= 1.

1



3. Let X1, X2, . . . be countable collection of metric spaces where we denote by di the
metric on Xi. A metric d inducing the product topology on X =

∏
i∈NXi is then for

instance given by

d(x, y) =
∞∑
i=1

2−imin{di(xi, yi), 1}

for any x, y ∈ X (see Exercise 1b)). We will show that X is sequentially compact.

For this, notice first that a sequence (x(n))n in X converges to some x ∈ X if and only
if x(n)i → xi as n → ∞ for any i. This can be shown directly from the definition of
the product topology.

Now let (x(n))n be an arbitrary sequence in X . By compactness of X1 we may choose
a subsequence (x(n))n∈J1 for J1 ⊂ N infinite with x(n)1 → y1 ∈ X1 as n → ∞ with
n ∈ J1. Similarly, there is a subsequence (x(n))n∈J2 of (x(n))n∈J1 with the property
that x(n)2 → y2 ∈ X2 as n → ∞ with n ∈ J2. Proceeding like this inductively, we
obtain nested, infinite subsets

J1 ⊃ J2 ⊃ J3 ⊃ . . .

and a point y = (yi)i ∈ X with

x
(n)
i → yi (n→∞, n ∈ Ji).

We now choose a sequence (nj)j of natural numbers with nj ∈ Jj and nj ≤ nj+1 for
all j ∈ N. By our choices the subsequence (x(nj))j converges to y ∈ X .

4. a) If (xn)n converges to x ∈ X then an arbitrary neighborhood U of x contains all
but finitely xn so U ∈ Ftail. This shows that Ux ⊂ Ftail as claimed.

Conversely, if Ux ⊂ Ftail any neighbourhood U of x (by definition of Ftail) con-
tains all but finitely many xn so xn → x as n→∞.

b) Assume first that F is an ultrafilter on X and let A ⊂ X . Consider

F ′ = {F ′ ⊂ X : A ∩ F ⊂ F ′ for some F ∈ F}.

IfA∩F is non-empty for all F ∈ F the above defines a filterF ′ containingF and
{A}. Since F is maximal, F ′ = F and A ∈ F . Similarly, if (X \A)∩ F is non-
empty for all F ∈ F we have X \ A ∈ F . Assuming that there are F1, F2 ∈ F
such that the intersections A ∩ F1 and (X \ A) ∩ F2 are empty we obtain that
F1 ⊂ X \ A and F2 ⊂ A so ∅ = F1 ∩ F2 ∈ F which is a contradiction.

Conversely, let F be a filter with A ∈ F or X \ A ∈ F for all A ⊂ X and
assume that F ′ ⊃ F is a filter which strictly contains F . Then there is A ∈ F ′
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with A 6∈ F . Therefore, X \ A ∈ F but since F ′ ⊃ F we have X \ A ∈ F ′ so
A ∩ (X \ A) = ∅ ∈ F ′ which is a contradiction. Thus, F is maximal.

Assume that U ∩ F 6= ∅ for all F ∈ F and all neighborhoods of x ∈ X and
that F is an ultrafilter. Then any neighborhood U of x is in F (as otherwise
X \ U = F ∈ F which contradicts U ∩ F 6= ∅) and thus F converges to x.

c) Assume first that F is a filter on X (not necessarily maximal). We show that
f(F) is a filter on Y . Indeed, if ∅ ∈ f(F) then f(F ) is empty for some F ∈
F which implies that F is empty and contradicts the fact that F is a filter. If
B1, B2 ∈ f(F) then there are F1, F2 ∈ F with f(F1) ⊂ B1 and f(F2) ⊂ B2.
Thus, f(F1 ∩ F2) ⊂ B1 ∩ B2 and hence B1 ∩ B2 ∈ f(F). If B ∈ f(F) and
B′ ⊃ B then there is F ∈ F with f(F ) ⊂ B ⊂ B′ and thus B′ ∈ f(F).
Assume that F is an ultrafilter and let B ∈ Y . Follwing part b) we show that
B ∈ f(F) or Y \B ∈ f(F) In fact, either f−1(B) ∈ F or f−1(Y \B) ∈ F (see
b)). The former implies that B ∈ f(F) as f(f−1(B)) ⊂ B and the latter implies
that Y \B ∈ f(F) as f(f−1(Y \B)) ⊂ Y \B.

Suppose now that F converges to x ∈ X i.e. Ux ⊂ F . Let V ⊂ Y be a neighbor-
hood of f(x). Then f−1(V ) is a neighborhood of x by continuity and therefore
f−1(V ) ∈ F . This shows that V ∈ f(F) as f(f−1(V )) ⊂ V .

d) Let F0 be a filter on X We consider the set

G = {F : F is a filter with F ⊃ F0}

which we equip with the partial order� given byF1 � F2 if and only ifF1 ⊂ F2.

We use Zorn’s lemma (see e.g. p. 538) to find a maximal element of G which
is then an ultrafilter containing F0. Clearly, G is non-empty as F0 ∈ A. For a
linearly ordered subset L ⊂ G one checks that

⋃
F∈LF is a filter. Zorn’s lemma

now implies that G contains a maximal element as desired.

5. a) Before beginning the proof let us recall that X is compact if and only if for any
collectionA of closed subsets ofX which satisfies the finite intersection property
(that is, A1, . . . , An 6= ∅ for any A1, . . . , An ∈ A) the intersection

⋂
A∈AA is

non-empty.

Assume first that X is compact and let F be an ultrafilter on X . We may thus
choose a point x in the intersection

⋂
F∈F F . Given a neighborhood U of x we

have that U ∩ F 6= ∅ for any F ∈ F as x ∈ F . By 4b) U ∈ F and F converges
to x.

Now assume that any ultrafilter on X converges and define for a collection A of
closed subsets ofX which satisfies the finite intersection property a filter as in the
hint to the exercise. By 4d) we may choose an ultrafilter F ′ containing F . Note
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that A ⊂ F ′ by the way we defined the filter F and F ′. By assumption there is
some x ∈ X with Ux ⊂ F ′. Since ∅ 6∈ F ′ the intersection of any neighborhood
of x and any element ofA is non-empty. In other words, A∩U for A ∈ A and U
a neighborhood of x is non-empty which shows that x ∈ A = A as A is closed.
Thus, x ∈

⋂
A∈AA.

b) As in the statement of Tychonoff’s Theorem let Xι for ι ∈ I be topological
spaces and let X =

∏
ι∈I Xι. Denote by πι the projection X → Xι for ι ∈ I.

If X is compact, Xι for any ι ∈ I is also compact as the image of a compact
space under a continuous map.

So assume that Xι is compact for any ι ∈ I. Let F be an ultrafilter on X . By 5a)
we aim to show that F converges. For this, notice first that for any ι the image
filter πι(F) is an ultrafilter (see 4c)) and converges (again by 5a)). So for any ι
let xι ∈ Xι be such that πι(F) converges to xι. We define x = (xι)ι ∈ X and
claim that F converges to x. By definition of the product topology it suffices to
show that π−1ι (Uι) for ι ∈ I and a neighborhood Uι ⊂ Xι is an element of F .
This follows from the definition of the image filter and Uxι ⊂ πι(F).
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