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1. This is a straight-forward verification.

To show strict positivity let (v, w) € V' x W. Then

10, w)llvxw = max{||vllv, w]w} =0

is equivalent to ||v||y = 0 and ||w|lw = 01i.e.to v = 0 and w = 0 by strict positivity
of the norms ||-||v, ||-||w-

To show homogeneity let (v,w) € V' x IV and let « be a scalar. Then
la(v, w)llvsw = [[(av, aw)|vxw = max{|av]ly, lawllw}

= max{|all|vflv, [af[lw]w} = |af max{{lv]ly, [[w[lw}

as desired where in the second to last equality we used the homogeneity of the norms
-l [1-flw-

To show the triangle inequality let (vi,w;), (ve,ws) € V x W. Then the triangle
inequality for the norms ||-||v, ||-||w yields

lor + vallv < flvrlly + l[oallv < [l(vr, wi)llvew + [[(v2, wa)l[vsw,

[wr + wsllw < [Jwnllw + [Jwzllw < [l(vr; wi)llvew + [[(v2, wa)[[vw-

Thus,
[ (v1, wi) + (v, wa)l[vxw = [[(v1 + v, w1 + w2)|lvxw
= max{||vy + v2[lv, [Jwr + wa|lw}
< [[(vr, w1)[lvxw + ([ (v2, w2)[lvxw
as desired.
2. Assume first that ||-||, ||-||" are equivalent. Let ¢ > 1 be such that

cloll” < ol < efoll



3.

forall v € V. Let (v,,), be a sequence in V' which converges to v € V' with respect to
the norm ||-|| (or more precisely the topology induced by it). Then

0 < limsupl||v — v,]|" < elimsup||v — v,]| =0
n—oo n—oo
so the limit lim,, ,.|[v — v,,||" exists and is equal to zero. Thus, the sequence (v,,),
converges to v € V with respect to the norm ||-||" as well. Similarly, one shows that
any sequence (v, ), in V' which converges to v € V' with respect to the norm ||-||" also
converges to v € V' with respect to the norm ||-|.

We now turn to the proof of the converse claim. Assume first by contradiction that
there is no constant ¢; such that ||v|| < ¢||v]| for all v € V. For any n € N we
may thus choose some v,, € V with [[v,[| > nl[v,||'. After replacing v, by v, we

may assume that |[v,|| = 1 for all n € N. Since ||v,||' < % for all n the sequence
(vn)n converges to zero with respect to the norm ||-||’. But since we have ||v,|| = 1
for all n € N it does not converge to zero with respect to the norm ||-|| which is a
contradiction. Thus, there is a constant ¢; > 1 such that ||v|| < ¢||v|| forallv € V.
Similarly, one shows that there is a constant ¢, > 1 such that ||v]|" < cy|v|| for all
v € V. The constant ¢ = max{cy, ¢} then satisfies

clloll” < ol < efoll

for all v € V so the norms ||-||, ||-||" are equivalent.

a) By Exercise 2 it suffices to find functions f,, € C''([0, 1]) such that the sequence
(fn)n converges to zero with respect to the norm ||-|| . but does not converge with
respect to the norm ||-||c1(jo,17). For n € N define f,, : [0,1] — R via

fn(I) = %Hxn+1

for z € [0, 1]. Then certainly f,, € C*([0,1]) and we have f’(z) = x™ for all
x € [0, 1]. Thus,

Ifllo =75 I fnllerqoay = fallee =1
so the functions f,, satisfy all desired properties.

b) It is straight-forward to verify that ||-|| : C'([0,1]) — Rs, is homogeneous
and satisfies the triangle inequality (i.e. it is a semi-norm). To show strict po-
sitivity, we use the fundamental theorem of calculus which states that for any
f € C*(]0,1]) we have

o =10+ | ) da 0



4.

a)

b)

forall x € [0,1]. So || f]lo = |f(0)] + || f'|lcc = 0 we have f(0) =0 and f' =0
and therefore f = 0 by (1). Thus, ||-||o is a norm.

To show equivalence of ||-||1(j0,1)) and ||-||o we also use the fundamental theorem
of calculus. For f € C''([0,1]) and any = € [0, 1] we have

@) < 1£0)] + / ()] de < [£(0)] + / 1o dz = [1£ o

This shows that || f||.c < || f]lo and together with the inequality || f'||cc < || fllo
we obtain

1fller o,y < 11f1lo

for all f € C'([0, 1]). For the converse inequality we estimate directly

1fllo = 1A O]+ 1 Moo < N flle + 11 Nloe < 20 Fllerio.1-

We fix b > 0 and consider the smooth function
CLp
f:a€[0,00)— ab— —.
b

Let amax € (1, 00) be a critical value of f i.e. with f/(apax) = 0. Then

flla)=b—all =0

max

and plugging this into the definition of f

maxD 1
f(amax) = Qmaxb — a— = lamaxb = lb1+pi1 = 1pa
p ¢ “ ]
as 1 + pil = pfl = 1_171_ = q. Since lima_mO f(a) = —oo and f(O) =0 <

p
f(amax) we conclude that the unique (global) maximum of f is attained at the
point a,,x. In summary, we have obtained that

— 1zq
for all @ > 0 which is Young’s inequality.

Let # € (N) and let y € ¢9(N). We may assume without loss of generality
that ||z||, = ||y|l, = 1 by replacing = with oy, or y with m if necessary. By
Young’s inequality from a) we have

p q
p q



for any n € N. For a fixed (large) N € N we may sum over all n between 1 and
N to obtain

ilx ] |<§:|xn|1>+§:|yn|q <§:’x"’p+§:’y"’q—l+l—1
n=1 il = n=1 p n=1 q B n=1 p n=1 q B p q B

2)

The series Y ., |x,||yx| is thus convergent and its value is less or equal than 1
as was to show.

¢) Everything apart from the triangle inequality follows directly from the definition
of ||-||,- Let z, y € ¢P(N). To avoid issues of convergence with fix a large enough
integer NV and consider sums only in the window [1, N]. Given any two sequences
z,w one can apply b) to the sequences 2’, 3/’ of finite support defined by 2/, = z,,
Y, =wy, ifn < N,z =y, =0if n > N to obtain

N N 5 /N G
> fedbal < (Slar) (Shenr)
n=1 n=1 n=1

Now notice that

N N
n=1 n=1

N N
< @l 4 gl DYyl + yal7
n=1 n=1

We now estimate each term. By (2) applied to the sequences z = z and w defined
by w, = |, + y,|P~! for n € N we have

S =

N N = N %
Z [Znl|Tn + yn|p_1 < (Z |3L’n|p> (Z |z, + yn|9(p—1)>

N
<zl (Z o0 + yn\p>
n=1

as p = q(p — 1). Similarly, one estimates the second term and obtains

q

1

N N q N
> w4 yul” < 2l (Z |n + an”> + [yl (Z | + an”>
n=1 n=1 n=1

q



1

Division by (ZnNzl |z, + yn]p> * gives

N 7
(Z |n + yn\p> < [l[lp + llyll
n=1

and the limit as N — oo yields the triangle inequality.

5. We begin by showing that V;, V5 are closed. Essentially, this is true as V;, V5 are defi-
ned by equations. For V7, notice that it is the preimage of {0} under the map

OV = N(N), (2,9) .

By definition of the norm in Exercise 1, ®; is 1-Lipschitz and in particular continuous.
Thus, V] is closed.

The subspace V5 is the intersection over all £ € N of the subspaces
Ve ={(z,y) €V : kyy =z}
Every V' is closed as it is the preimage of {0} under the continuous linear map
PV = C, (xz,y) = kyp — a1
Indeed, % is (k + 1)-Lipschitz as for any (z,y) € V
|y — x| < klye] + zx] < Ellyll + [[zlly < Bl (2, 9)[lv + [z, 9)[lv

= (k+ D[z, y)]lv-

It remains to show that V; + V5 is not closed. For this we consider the subspace ¢.(N)
of (*(N) of finitely supported sequences i.e. sequences x with z,, = 0 for all large
enough n. Notice that c.(N) is dense in ¢!(N). Indeed, given z € ¢*(N) we may
choose for any € > 0 some N € Nwith 3 [2,]| < €. If we then set 2’ € c.(N)
to be the sequence with =), = z,, if n < N and 2/, = 0if n > N we obtain

lz —a'li="3 leal <e

n=N+1
As c.(N) is dense in /1 (N), ¢.(N) x c.(N) is dense in V.

We claim that V] 4+ V5 contains ¢.(N) x ¢.(N) so that V; 4+ V5 is also dense. Indeed,
given (z,y) € c.(N) we can write for every n

(xm yn) = (l'n — NYn, O) + (nym yn)



The first term on the right defines an element of 1/ and the second an element of 1,
as x, y are finitely supported. This shows the claim.

However, V; + V3 is not all of V' as for instance the vector (z, y) given by x,, = 0 and
Yn = # is not contained in V; + V5. In fact, suppose we can write

(z,9) = (0,y) = (2',0) + (=", ")

where (2/,0) € V; and (2”,y”) € Vo. Then y, =y, = 5 and 2, = =/, = ny), = <.
But then 2’ € ¢!(N) which yields a contradiction.

Summing things up, V7 4+ V5 is dense and not all of V. In particular, V; 4 V5 is not
closed.

. Notice that 0 € B as for any b € B we have —b € B (by rotational invariance) and

thus W € B (by convexity). If v € C? and o > 0 is such that av € B then 0 € B

implies that Sv € B for any § € [—a, a].
We define ||-|| : C? — R through
|v]| =inf {A>0:5v e B}

for all v € C¢. To motivate this (at first possibly random) definition let us show that
the open unit ball for ||-|| is B (though we haven’t shown that ||-|| is a norm yet). If
v € B then (as B is open) there exists a d > 0 such that ~v € Bso[jv|| <1-0 < 1.
Conversely, if v € C satisfies |[v]| < 1 then any A > ||v|| fulfills +v € B (here we
use convexity) and in particular v = 1v € B.

We now turn to showing that ||-|| is indeed a norm. By definition ||-|| is non-negative.
If v € B satisfies [|v]| = 0 then +v € B for all A > 0 which is impossible as B is
bounded. This shows strict positivity.

To show homogeneity, let &« € C be non-zero (otherwise we are already done) and
let v € C% Write a = |a|o/ where o/ € C has norm one. Note first of all that
|[a’v]| = ||v|| as by rotational invariance A > 0 satisfies v € B if and only if it
satisfies $o/v € B. We can thus assume that &« = |a| > 0. If A > 0 is such that
$v € B, the number N = || fulfills 5;||v € B and so [|or||v < |ev|[v]|. The other

inequality is obtained in the same fashion.

To show the triangle inequality we let v1, v, € C? be arbitrary and pick A;, A, > 0
such that A—llvl, 712@2 € B. We need to show that ||v; + va|| < A; + Aa. Observe that

1 _ 2 1 A 1
A1+A2 (Ul + v2> o >\1+1>\2 (EU ) + >\1-‘f)\2 <EU2)'
By the choice of A; and A, the right hand side is a convex combination of elements of

B and is therefore in B. This proves the triangle inequality and we conclude that ||-|
is a norm with open unit ball B as desired.



