Functional analysis I

D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Solutions for exercise sheet 1

1. This is a straight-forward verification.

To show strict positivity let $(v, w) \in V \times W$. Then

 $||(v,w)||_{V\times W} = \max\{||v||_V, ||w||_W\} = 0$

is equivalent to $||v||_V = 0$ and $||w||_W = 0$ i.e. to v = 0 and w = 0 by strict positivity of the norms $||\cdot||_V$, $||\cdot||_W$.

To show homogeneity let $(v, w) \in V \times W$ and let α be a scalar. Then

$$\|\alpha(v,w)\|_{V\times W} = \|(\alpha v, \alpha w)\|_{V\times W} = \max\{\|\alpha v\|_{V}, \|\alpha w\|_{W}\}$$
$$= \max\{|\alpha|\|v\|_{V}, |\alpha|\|w\|_{W}\} = |\alpha|\max\{\|v\|_{V}, \|w\|_{W}\}$$

as desired where in the second to last equality we used the homogeneity of the norms $\|\cdot\|_V, \|\cdot\|_W$.

To show the triangle inequality let $(v_1, w_1), (v_2, w_2) \in V \times W$. Then the triangle inequality for the norms $\|\cdot\|_V, \|\cdot\|_W$ yields

$$||v_1 + v_2||_V \le ||v_1||_V + ||v_2||_V \le ||(v_1, w_1)||_{V \times W} + ||(v_2, w_2)||_{V \times W},$$

$$||w_1 + w_2||_W \le ||w_1||_W + ||w_2||_W \le ||(v_1, w_1)||_{V \times W} + ||(v_2, w_2)||_{V \times W}.$$

Thus,

$$\begin{aligned} \|(v_1, w_1) + (v_2, w_2)\|_{V \times W} &= \|(v_1 + v_2, w_1 + w_2)\|_{V \times W} \\ &= \max\{\|v_1 + v_2\|_V, \|w_1 + w_2\|_W\} \\ &\leq \|(v_1, w_1)\|_{V \times W} + \|(v_2, w_2)\|_{V \times W} \end{aligned}$$

as desired.

2. Assume first that $\|\cdot\|$, $\|\cdot\|'$ are equivalent. Let $c \ge 1$ be such that

$$\frac{1}{c} \|v\|' \le \|v\| \le c \|v\|'$$

for all $v \in V$. Let $(v_n)_n$ be a sequence in V which converges to $v \in V$ with respect to the norm $\|\cdot\|$ (or more precisely the topology induced by it). Then

$$0 \le \limsup_{n \to \infty} ||v - v_n||' \le c \limsup_{n \to \infty} ||v - v_n|| = 0$$

so the limit $\lim_{n\to\infty} ||v - v_n||'$ exists and is equal to zero. Thus, the sequence $(v_n)_n$ converges to $v \in V$ with respect to the norm $||\cdot||'$ as well. Similarly, one shows that any sequence $(v_n)_n$ in V which converges to $v \in V$ with respect to the norm $||\cdot||'$ also converges to $v \in V$ with respect to the norm $||\cdot||$.

We now turn to the proof of the converse claim. Assume first by contradiction that there is no constant c_1 such that $||v|| \leq c_1 ||v||'$ for all $v \in V$. For any $n \in \mathbb{N}$ we may thus choose some $v_n \in V$ with $||v_n|| > n ||v_n||'$. After replacing v_n by $\frac{1}{||v_n||}v_n$ we may assume that $||v_n|| = 1$ for all $n \in \mathbb{N}$. Since $||v_n||' < \frac{1}{n}$ for all n the sequence $(v_n)_n$ converges to zero with respect to the norm $||\cdot||'$. But since we have $||v_n|| = 1$ for all $n \in \mathbb{N}$ it does not converge to zero with respect to the norm $||\cdot||$ which is a contradiction. Thus, there is a constant $c_1 \ge 1$ such that $||v|| \le c_1 ||v||'$ for all $v \in V$. Similarly, one shows that there is a constant $c_2 \ge 1$ such that $||v||' \le c_2 ||v||$ for all $v \in V$. The constant $c = \max\{c_1, c_2\}$ then satisfies

$$\frac{1}{c} \|v\|' \le \|v\| \le c \|v\|'$$

for all $v \in V$ so the norms $\|\cdot\|, \|\cdot\|'$ are equivalent.

a) By Exercise 2 it suffices to find functions f_n ∈ C¹([0,1]) such that the sequence (f_n)_n converges to zero with respect to the norm ||·||_∞ but does not converge with respect to the norm ||·||_{C¹([0,1])}. For n ∈ N define f_n : [0,1] → R via

$$f_n(x) = \frac{1}{n+1}x^{n+1}$$

for $x \in [0,1]$. Then certainly $f_n \in C^1([0,1])$ and we have $f'_n(x) = x^n$ for all $x \in [0,1]$. Thus,

$$||f_n||_{\infty} = \frac{1}{n}, \quad ||f_n||_{C^1([0,1])} = ||f'_n||_{\infty} = 1$$

so the functions f_n satisfy all desired properties.

b) It is straight-forward to verify that $\|\cdot\|_0 : C^1([0,1]) \to \mathbb{R}_{\geq 0}$ is homogeneous and satisfies the triangle inequality (i.e. it is a semi-norm). To show strict positivity, we use the fundamental theorem of calculus which states that for any $f \in C^1([0,1])$ we have

$$f(x) = f(0) + \int_0^1 f'(x) \,\mathrm{d}x \tag{1}$$

for all $x \in [0, 1]$. So $||f||_0 = |f(0)| + ||f'||_{\infty} = 0$ we have f(0) = 0 and f' = 0and therefore f = 0 by (1). Thus, $|| \cdot ||_0$ is a norm.

To show equivalence of $\|\cdot\|_{C^1([0,1])}$ and $\|\cdot\|_0$ we also use the fundamental theorem of calculus. For $f \in C^1([0,1])$ and any $x \in [0,1]$ we have

$$|f(x)| \le |f(0)| + \int_0^1 |f'(x)| \, \mathrm{d}x \le |f(0)| + \int_0^1 ||f'||_\infty \, \mathrm{d}x = ||f||_0.$$

This shows that $||f||_{\infty} \leq ||f||_0$ and together with the inequality $||f'||_{\infty} \leq ||f||_0$ we obtain

$$\|f\|_{C^1([0,1])} \le \|f\|_0$$

for all $f \in C^1([0,1])$. For the converse inequality we estimate directly

$$||f||_0 = |f(0)| + ||f'||_{\infty} \le ||f||_{\infty} + ||f'||_{\infty} \le 2||f||_{C^1([0,1])}$$

4. a) We fix $b \ge 0$ and consider the smooth function

$$f: a \in [0,\infty) \mapsto ab - \frac{a^p}{p}$$

Let $a_{\max} \in (1, \infty)$ be a critical value of f i.e. with $f'(a_{\max}) = 0$. Then

$$f'(a) = b - a_{\max}^{p-1} = 0$$

and plugging this into the definition of f

$$f(a_{\max}) = a_{\max}b - \frac{a_{\max}b}{p} = \frac{1}{q}a_{\max}b = \frac{1}{q}b^{1+\frac{1}{p-1}} = \frac{1}{q}b^{q}$$

as $1 + \frac{1}{p-1} = \frac{p}{p-1} = \frac{1}{1-\frac{1}{p}} = q$. Since $\lim_{a\to\infty} f(a) = -\infty$ and $f(0) = 0 < f(a_{\max})$ we conclude that the unique (global) maximum of f is attained at the point a_{\max} . In summary, we have obtained that

$$f(a) \le f(a_{\max}) = \frac{1}{a}b^q$$

for all $a \ge 0$ which is Young's inequality.

b) Let $x \in \ell(\mathbb{N})$ and let $y \in \ell^q(\mathbb{N})$. We may assume without loss of generality that $||x||_p = ||y||_q = 1$ by replacing x with $\frac{x}{||x||_p}$ or y with $\frac{y}{||y||_q}$ if necessary. By Young's inequality from a) we have

$$|x_n||y_n| \le \frac{|x_n|^p}{p} + \frac{|y_n|^q}{q}$$

for any $n \in \mathbb{N}$. For a fixed (large) $N \in \mathbb{N}$ we may sum over all n between 1 and N to obtain

$$\sum_{n=1}^{N} |x_n| |y_n| \le \sum_{n=1}^{N} \frac{|x_n|^p}{p} + \sum_{n=1}^{N} \frac{|y_n|^q}{q} \le \sum_{n=1}^{\infty} \frac{|x_n|^p}{p} + \sum_{n=1}^{\infty} \frac{|y_n|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1$$
(2)

The series $\sum_{n=1}^{\infty} |x_n| |y_n|$ is thus convergent and its value is less or equal than 1 as was to show.

c) Everything apart from the triangle inequality follows directly from the definition of ||·||_p. Let x, y ∈ ℓ^p(N). To avoid issues of convergence with fix a large enough integer N and consider sums only in the window [1, N]. Given any two sequences z, w one can apply b) to the sequences x', y' of finite support defined by x'_n = z_n, y'_n = w_n if n ≤ N, x'_n = y'_n = 0 if n > N to obtain

$$\sum_{n=1}^{N} |z_n| |w_n| \le \left(\sum_{n=1}^{N} |z_n|^p\right)^{\frac{1}{p}} \left(\sum_{n=1}^{N} |w_n|^q\right)^{\frac{1}{q}}.$$

Now notice that

$$\sum_{n=1}^{N} |x_n + y_n|^p = \sum_{n=1}^{N} |x_n + y_n| |x_n + y_n|^{p-1}$$
$$\leq \sum_{n=1}^{N} |x_n| |x_n + y_n|^{p-1} + \sum_{n=1}^{N} |y_n| |x_n + y_n|^{p-1}.$$

We now estimate each term. By (2) applied to the sequences z = x and w defined by $w_n = |x_n + y_n|^{p-1}$ for $n \in \mathbb{N}$ we have

$$\sum_{n=1}^{N} |x_n| |x_n + y_n|^{p-1} \le \left(\sum_{n=1}^{N} |x_n|^p \right)^{\frac{1}{p}} \left(\sum_{n=1}^{N} |x_n + y_n|^{q(p-1)} \right)^{\frac{1}{q}} \le \|x\|_p \left(\sum_{n=1}^{N} |x_n + y_n|^p \right)^{\frac{1}{q}}$$

as p = q(p - 1). Similarly, one estimates the second term and obtains

$$\sum_{n=1}^{N} |x_n + y_n|^p \le ||x||_p \left(\sum_{n=1}^{N} |x_n + y_n|^p\right)^{\frac{1}{q}} + ||y||_p \left(\sum_{n=1}^{N} |x_n + y_n|^p\right)^{\frac{1}{q}}$$

Division by $\left(\sum_{n=1}^{N} |x_n + y_n|^p\right)^{\frac{1}{q}}$ gives

$$\left(\sum_{n=1}^{N} |x_n + y_n|^p\right)^{\frac{1}{p}} \le ||x||_p + ||y||_p$$

and the limit as $N \to \infty$ yields the triangle inequality.

5. We begin by showing that V_1, V_2 are closed. Essentially, this is true as V_1, V_2 are defined by equations. For V_1 , notice that it is the preimage of $\{0\}$ under the map

$$\Phi_1: V \to \ell^1(\mathbb{N}), \quad (x, y) \mapsto y.$$

By definition of the norm in Exercise 1, Φ_1 is 1-Lipschitz and in particular continuous. Thus, V_1 is closed.

The subspace V_2 is the intersection over all $k \in \mathbb{N}$ of the subspaces

$$V_2^k = \{ (x, y) \in V : ky_k = x_k \}.$$

Every V_2^k is closed as it is the preimage of $\{0\}$ under the continuous linear map

$$\Phi_2^k: V \to \mathbb{C}, \quad (x, y) \mapsto ky_k - x_k.$$

Indeed, Φ_2^k is (k+1)-Lipschitz as for any $(x,y)\in V$

$$|ky_k - x_k| \le k|y_k| + |x_k| \le k||y||_1 + ||x||_1 \le k||(x, y)||_V + ||(x, y)||_V$$

= $(k+1)||(x, y)||_V$.

It remains to show that $V_1 + V_2$ is not closed. For this we consider the subspace $c_c(\mathbb{N})$ of $\ell^1(\mathbb{N})$ of finitely supported sequences i.e. sequences x with $x_n = 0$ for all large enough n. Notice that $c_c(\mathbb{N})$ is dense in $\ell^1(\mathbb{N})$. Indeed, given $x \in \ell^1(\mathbb{N})$ we may choose for any $\epsilon > 0$ some $N \in \mathbb{N}$ with $\sum_{n=N+1}^{\infty} |x_n| < \epsilon$. If we then set $x' \in c_c(\mathbb{N})$ to be the sequence with $x'_n = x_n$ if $n \leq N$ and $x'_n = 0$ if n > N we obtain

$$||x - x'||_1 = \sum_{n=N+1}^{\infty} |x_n| < \epsilon$$

As $c_c(\mathbb{N})$ is dense in $\ell^1(\mathbb{N})$, $c_c(\mathbb{N}) \times c_c(\mathbb{N})$ is dense in V.

We claim that $V_1 + V_2$ contains $c_c(\mathbb{N}) \times c_c(\mathbb{N})$ so that $V_1 + V_2$ is also dense. Indeed, given $(x, y) \in c_c(\mathbb{N})$ we can write for every n

$$(x_n, y_n) = (x_n - ny_n, 0) + (ny_n, y_n).$$

The first term on the right defines an element of V_1 and the second an element of V_2 as x, y are finitely supported. This shows the claim.

However, $V_1 + V_2$ is not all of V as for instance the vector (x, y) given by $x_n = 0$ and $y_n = \frac{1}{n^2}$ is not contained in $V_1 + V_2$. In fact, suppose we can write

$$(x,y) = (0,y) = (x',0) + (x'',y'')$$

where $(x', 0) \in V_1$ and $(x'', y'') \in V_2$. Then $y''_n = y_n = \frac{1}{n^2}$ and $x'_n = x''_n = ny''_n = \frac{1}{n}$. But then $x' \in \ell^1(\mathbb{N})$ which yields a contradiction.

Summing things up, $V_1 + V_2$ is dense and not all of V. In particular, $V_1 + V_2$ is not closed.

6. Notice that $0 \in B$ as for any $b \in B$ we have $-b \in B$ (by rotational invariance) and thus $\frac{b+(-b)}{2} \in B$ (by convexity). If $v \in \mathbb{C}^d$ and $\alpha > 0$ is such that $\alpha v \in B$ then $0 \in B$ implies that $\beta v \in B$ for any $\beta \in [-\alpha, \alpha]$.

We define $\|\cdot\|: \mathbb{C}^d \to \mathbb{R}_{\geq 0}$ through

$$||v|| = \inf\left\{\lambda > 0 : \frac{1}{\lambda}v \in B\right\}$$

for all $v \in \mathbb{C}^d$. To motivate this (at first possibly random) definition let us show that the open unit ball for $\|\cdot\|$ is B (though we haven't shown that $\|\cdot\|$ is a norm yet). If $v \in B$ then (as B is open) there exists a $\delta > 0$ such that $\frac{1}{1-\delta}v \in B$ so $\|v\| \le 1-\delta < 1$. Conversely, if $v \in \mathbb{C}^d$ satisfies $\|v\| < 1$ then any $\lambda > \|v\|$ fulfills $\frac{1}{\lambda}v \in B$ (here we use convexity) and in particular $v = \frac{1}{1}v \in B$.

We now turn to showing that $\|\cdot\|$ is indeed a norm. By definition $\|\cdot\|$ is non-negative. If $v \in B$ satisfies $\|v\| = 0$ then $\frac{1}{\lambda}v \in B$ for all $\lambda > 0$ which is impossible as B is bounded. This shows strict positivity.

To show homogeneity, let $\alpha \in \mathbb{C}$ be non-zero (otherwise we are already done) and let $v \in \mathbb{C}^d$. Write $\alpha = |\alpha|\alpha'$ where $\alpha' \in \mathbb{C}$ has norm one. Note first of all that $\|\alpha'v\| = \|v\|$ as by rotational invariance $\lambda > 0$ satisfies $\frac{1}{\lambda}v \in B$ if and only if it satisfies $\frac{1}{\lambda}\alpha'v \in B$. We can thus assume that $\alpha = |\alpha| > 0$. If $\lambda > 0$ is such that $\frac{1}{\lambda}v \in B$, the number $\lambda' = |\alpha|\lambda$ fulfills $\frac{1}{\lambda'}|\alpha|v \in B$ and so $\|\alpha\|v \le |\alpha|\|v\|$. The other inequality is obtained in the same fashion.

To show the triangle inequality we let $v_1, v_2 \in \mathbb{C}^d$ be arbitrary and pick $\lambda_1, \lambda_2 > 0$ such that $\frac{1}{\lambda_1}v_1, \frac{1}{\lambda_2}v_2 \in B$. We need to show that $||v_1 + v_2|| \leq \lambda_1 + \lambda_2$. Observe that

$$\frac{1}{\lambda_1 + \lambda_2} (v_1 + v_2) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \left(\frac{1}{\lambda_1} v_1\right) + \frac{\lambda_2}{\lambda_1 + \lambda_2} \left(\frac{1}{\lambda_2} v_2\right).$$

By the choice of λ_1 and λ_2 the right hand side is a convex combination of elements of B and is therefore in B. This proves the triangle inequality and we conclude that $\|\cdot\|$ is a norm with open unit ball B as desired.