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1. This is a straight-forward verification.

To show strict positivity let (v, w) ∈ V ×W . Then

‖(v, w)‖V×W = max{‖v‖V , ‖w‖W} = 0

is equivalent to ‖v‖V = 0 and ‖w‖W = 0 i.e. to v = 0 and w = 0 by strict positivity
of the norms ‖·‖V , ‖·‖W .

To show homogeneity let (v, w) ∈ V ×W and let α be a scalar. Then

‖α(v, w)‖V×W = ‖(αv, αw)‖V×W = max{‖αv‖V , ‖αw‖W}
= max{|α|‖v‖V , |α|‖w‖W} = |α|max{‖v‖V , ‖w‖W}

as desired where in the second to last equality we used the homogeneity of the norms
‖·‖V , ‖·‖W .

To show the triangle inequality let (v1, w1), (v2, w2) ∈ V × W . Then the triangle
inequality for the norms ‖·‖V , ‖·‖W yields

‖v1 + v2‖V ≤ ‖v1‖V + ‖v2‖V ≤ ‖(v1, w1)‖V×W + ‖(v2, w2)‖V×W ,
‖w1 + w2‖W ≤ ‖w1‖W + ‖w2‖W ≤ ‖(v1, w1)‖V×W + ‖(v2, w2)‖V×W .

Thus,

‖(v1, w1) + (v2, w2)‖V×W = ‖(v1 + v2, w1 + w2)‖V×W
= max{‖v1 + v2‖V , ‖w1 + w2‖W}
≤ ‖(v1, w1)‖V×W + ‖(v2, w2)‖V×W

as desired.

2. Assume first that ‖·‖, ‖·‖′ are equivalent. Let c ≥ 1 be such that

1
c
‖v‖′ ≤ ‖v‖ ≤ c‖v‖′
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for all v ∈ V . Let (vn)n be a sequence in V which converges to v ∈ V with respect to
the norm ‖·‖ (or more precisely the topology induced by it). Then

0 ≤ lim sup
n→∞

‖v − vn‖′ ≤ c lim sup
n→∞

‖v − vn‖ = 0

so the limit limn→∞‖v − vn‖′ exists and is equal to zero. Thus, the sequence (vn)n
converges to v ∈ V with respect to the norm ‖·‖′ as well. Similarly, one shows that
any sequence (vn)n in V which converges to v ∈ V with respect to the norm ‖·‖′ also
converges to v ∈ V with respect to the norm ‖·‖.

We now turn to the proof of the converse claim. Assume first by contradiction that
there is no constant c1 such that ‖v‖ ≤ c1‖v‖′ for all v ∈ V . For any n ∈ N we
may thus choose some vn ∈ V with ‖vn‖ > n‖vn‖′. After replacing vn by 1

‖vn‖vn we
may assume that ‖vn‖ = 1 for all n ∈ N. Since ‖vn‖′ < 1

n
for all n the sequence

(vn)n converges to zero with respect to the norm ‖·‖′. But since we have ‖vn‖ = 1
for all n ∈ N it does not converge to zero with respect to the norm ‖·‖ which is a
contradiction. Thus, there is a constant c1 ≥ 1 such that ‖v‖ ≤ c1‖v‖′ for all v ∈ V .
Similarly, one shows that there is a constant c2 ≥ 1 such that ‖v‖′ ≤ c2‖v‖ for all
v ∈ V . The constant c = max{c1, c2} then satisfies

1
c
‖v‖′ ≤ ‖v‖ ≤ c‖v‖′

for all v ∈ V so the norms ‖·‖, ‖·‖′ are equivalent.

3. a) By Exercise 2 it suffices to find functions fn ∈ C1([0, 1]) such that the sequence
(fn)n converges to zero with respect to the norm ‖·‖∞ but does not converge with
respect to the norm ‖·‖C1([0,1]). For n ∈ N define fn : [0, 1]→ R via

fn(x) = 1
n+1

xn+1

for x ∈ [0, 1]. Then certainly fn ∈ C1([0, 1]) and we have f ′n(x) = xn for all
x ∈ [0, 1]. Thus,

‖fn‖∞ = 1
n
, ‖fn‖C1([0,1]) = ‖f ′n‖∞ = 1

so the functions fn satisfy all desired properties.

b) It is straight-forward to verify that ‖·‖0 : C1([0, 1]) → R≥0 is homogeneous
and satisfies the triangle inequality (i.e. it is a semi-norm). To show strict po-
sitivity, we use the fundamental theorem of calculus which states that for any
f ∈ C1([0, 1]) we have

f(x) = f(0) +

∫ 1

0

f ′(x) dx (1)
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for all x ∈ [0, 1]. So ‖f‖0 = |f(0)| + ‖f ′‖∞ = 0 we have f(0) = 0 and f ′ = 0
and therefore f = 0 by (1). Thus, ‖·‖0 is a norm.

To show equivalence of ‖·‖C1([0,1]) and ‖·‖0 we also use the fundamental theorem
of calculus. For f ∈ C1([0, 1]) and any x ∈ [0, 1] we have

|f(x)| ≤ |f(0)|+
∫ 1

0

|f ′(x)| dx ≤ |f(0)|+
∫ 1

0

‖f ′‖∞ dx = ‖f‖0.

This shows that ‖f‖∞ ≤ ‖f‖0 and together with the inequality ‖f ′‖∞ ≤ ‖f‖0
we obtain

‖f‖C1([0,1]) ≤ ‖f‖0

for all f ∈ C1([0, 1]). For the converse inequality we estimate directly

‖f‖0 = |f(0)|+ ‖f ′‖∞ ≤ ‖f‖∞ + ‖f ′‖∞ ≤ 2‖f‖C1([0,1]).

4. a) We fix b ≥ 0 and consider the smooth function

f : a ∈ [0,∞) 7→ ab− ap

p
.

Let amax ∈ (1,∞) be a critical value of f i.e. with f ′(amax) = 0. Then

f ′(a) = b− ap−1max = 0

and plugging this into the definition of f

f(amax) = amaxb−
amaxb

p
= 1

q
amaxb = 1

q
b1+

1
p−1 = 1

q
bq

as 1 + 1
p−1 = p

p−1 = 1
1− 1

p

= q. Since lima→∞ f(a) = −∞ and f(0) = 0 <

f(amax) we conclude that the unique (global) maximum of f is attained at the
point amax. In summary, we have obtained that

f(a) ≤ f(amax) = 1
q
bq

for all a ≥ 0 which is Young’s inequality.

b) Let x ∈ `(N) and let y ∈ `q(N). We may assume without loss of generality
that ‖x‖p = ‖y‖q = 1 by replacing x with x

‖x‖p or y with y
‖y‖q if necessary. By

Young’s inequality from a) we have

|xn||yn| ≤
|xn|p

p
+
|yn|q

q
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for any n ∈ N. For a fixed (large) N ∈ N we may sum over all n between 1 and
N to obtain

N∑
n=1

|xn||yn| ≤
N∑
n=1

|xn|p

p
+

N∑
n=1

|yn|q

q
≤

∞∑
n=1

|xn|p

p
+
∞∑
n=1

|yn|q

q
=

1

p
+

1

q
= 1

(2)

The series
∑∞

n=1 |xn||yn| is thus convergent and its value is less or equal than 1
as was to show.

c) Everything apart from the triangle inequality follows directly from the definition
of ‖·‖p. Let x, y ∈ `p(N). To avoid issues of convergence with fix a large enough
integerN and consider sums only in the window [1, N ]. Given any two sequences
z, w one can apply b) to the sequences x′, y′ of finite support defined by x′n = zn,
y′n = wn if n ≤ N , x′n = y′n = 0 if n > N to obtain

N∑
n=1

|zn||wn| ≤

(
N∑
n=1

|zn|p
) 1

p
(

N∑
n=1

|wn|q
) 1

q

.

Now notice that

N∑
n=1

|xn + yn|p =
N∑
n=1

|xn + yn||xn + yn|p−1

≤
N∑
n=1

|xn||xn + yn|p−1 +
N∑
n=1

|yn||xn + yn|p−1.

We now estimate each term. By (2) applied to the sequences z = x and w defined
by wn = |xn + yn|p−1 for n ∈ N we have

N∑
n=1

|xn||xn + yn|p−1 ≤

(
N∑
n=1

|xn|p
) 1

p
(

N∑
n=1

|xn + yn|q(p−1)
) 1

q

≤ ‖x‖p

(
N∑
n=1

|xn + yn|p
) 1

q

as p = q(p− 1). Similarly, one estimates the second term and obtains

N∑
n=1

|xn + yn|p ≤ ‖x‖p

(
N∑
n=1

|xn + yn|p
) 1

q

+ ‖y‖p

(
N∑
n=1

|xn + yn|p
) 1

q

.
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Division by
(∑N

n=1 |xn + yn|p
) 1

q
gives

(
N∑
n=1

|xn + yn|p
) 1

p

≤ ‖x‖p + ‖y‖p

and the limit as N →∞ yields the triangle inequality.

5. We begin by showing that V1, V2 are closed. Essentially, this is true as V1, V2 are defi-
ned by equations. For V1, notice that it is the preimage of {0} under the map

Φ1 : V → `1(N), (x, y) 7→ y.

By definition of the norm in Exercise 1, Φ1 is 1-Lipschitz and in particular continuous.
Thus, V1 is closed.

The subspace V2 is the intersection over all k ∈ N of the subspaces

V k
2 = {(x, y) ∈ V : kyk = xk}.

Every V k
2 is closed as it is the preimage of {0} under the continuous linear map

Φk
2 : V → C, (x, y) 7→ kyk − xk.

Indeed, Φk
2 is (k + 1)-Lipschitz as for any (x, y) ∈ V

|kyk − xk| ≤ k|yk|+ |xk| ≤ k‖y‖1 + ‖x‖1 ≤ k‖(x, y)‖V + ‖(x, y)‖V
= (k + 1)‖(x, y)‖V .

It remains to show that V1 + V2 is not closed. For this we consider the subspace cc(N)
of `1(N) of finitely supported sequences i.e. sequences x with xn = 0 for all large
enough n. Notice that cc(N) is dense in `1(N). Indeed, given x ∈ `1(N) we may
choose for any ε > 0 some N ∈ N with

∑∞
n=N+1 |xn| < ε. If we then set x′ ∈ cc(N)

to be the sequence with x′n = xn if n ≤ N and x′n = 0 if n > N we obtain

‖x− x′‖1 =
∞∑

n=N+1

|xn| < ε

As cc(N) is dense in `1(N), cc(N)× cc(N) is dense in V .

We claim that V1 + V2 contains cc(N) × cc(N) so that V1 + V2 is also dense. Indeed,
given (x, y) ∈ cc(N) we can write for every n

(xn, yn) = (xn − nyn, 0) + (nyn, yn).
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The first term on the right defines an element of V1 and the second an element of V2
as x, y are finitely supported. This shows the claim.

However, V1 + V2 is not all of V as for instance the vector (x, y) given by xn = 0 and
yn = 1

n2 is not contained in V1 + V2. In fact, suppose we can write

(x, y) = (0, y) = (x′, 0) + (x′′, y′′)

where (x′, 0) ∈ V1 and (x′′, y′′) ∈ V2. Then y′′n = yn = 1
n2 and x′n = x′′n = ny′′n = 1

n
.

But then x′ ∈ `1(N) which yields a contradiction.

Summing things up, V1 + V2 is dense and not all of V . In particular, V1 + V2 is not
closed.

6. Notice that 0 ∈ B as for any b ∈ B we have −b ∈ B (by rotational invariance) and
thus b+(−b)

2
∈ B (by convexity). If v ∈ Cd and α > 0 is such that αv ∈ B then 0 ∈ B

implies that βv ∈ B for any β ∈ [−α, α].

We define ‖·‖ : Cd → R≥0 through

‖v‖ = inf
{
λ > 0 : 1

λ
v ∈ B

}
for all v ∈ Cd. To motivate this (at first possibly random) definition let us show that
the open unit ball for ‖·‖ is B (though we haven’t shown that ‖·‖ is a norm yet). If
v ∈ B then (asB is open) there exists a δ > 0 such that 1

1−δv ∈ B so ‖v‖ ≤ 1−δ < 1.
Conversely, if v ∈ Cd satisfies ‖v‖ < 1 then any λ > ‖v‖ fulfills 1

λ
v ∈ B (here we

use convexity) and in particular v = 1
1
v ∈ B.

We now turn to showing that ‖·‖ is indeed a norm. By definition ‖·‖ is non-negative.
If v ∈ B satisfies ‖v‖ = 0 then 1

λ
v ∈ B for all λ > 0 which is impossible as B is

bounded. This shows strict positivity.

To show homogeneity, let α ∈ C be non-zero (otherwise we are already done) and
let v ∈ Cd. Write α = |α|α′ where α′ ∈ C has norm one. Note first of all that
‖α′v‖ = ‖v‖ as by rotational invariance λ > 0 satisfies 1

λ
v ∈ B if and only if it

satisfies 1
λ
α′v ∈ B. We can thus assume that α = |α| > 0. If λ > 0 is such that

1
λ
v ∈ B, the number λ′ = |α|λ fulfills 1

λ′
|α|v ∈ B and so ‖α‖v ≤ |α|‖v‖. The other

inequality is obtained in the same fashion.

To show the triangle inequality we let v1, v2 ∈ Cd be arbitrary and pick λ1, λ2 > 0
such that 1

λ1
v1,

1
λ2
v2 ∈ B. We need to show that ‖v1 + v2‖ ≤ λ1 + λ2. Observe that

1
λ1+λ2

(v1 + v2) = λ1
λ1+λ2

(
1
λ1
v1
)

+ λ2
λ1+λ2

(
1
λ2
v2
)
.

By the choice of λ1 and λ2 the right hand side is a convex combination of elements of
B and is therefore in B. This proves the triangle inequality and we conclude that ‖·‖
is a norm with open unit ball B as desired.
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