Solutions for exercise sheet 2

1. a) Assume first that $(W,\|\cdot\|)$ is complete and let $\left(w_{n}\right)_{n}$ be a sequence in W which converges in V to a point $w \in V$. Then $\left(w_{n}\right)_{n}$ is in particular a Cauchy sequence and therefore has a limit in W. By uniqueness of limits in V, this limit is equal to w so $w \in W$.
Assume that W is closed and let $\left(w_{n}\right)_{n}$ is a Cauchy sequence in W. In particular, $\left(w_{n}\right)_{n}$ is a Cauchy sequence in V and since V is complete, it has a limit $w \in V$. As W is closed, we must have $w \in W$ so the Cauchy sequence converges in W.
b) Assume first that $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ are Banach spaces. Let $\left(\left(v_{n}, w_{n}\right)\right)_{n}$ be a Cauchy sequence in $V \times W$. For $\epsilon>0$ there is $N \in \mathbb{N}$ such that

$$
\left\|\left(v_{n}-v_{m}, w_{n}-w_{m}\right)\right\|_{V \times W}=\left\|\left(v_{n}, w_{n}\right)-\left(v_{m}, w_{m}\right)\right\|_{V \times W}<\epsilon
$$

for all $m, n \geq N$. In particular,

$$
\begin{aligned}
\left\|v_{n}-v_{m}\right\|_{V} & \leq\left\|\left(v_{n}, w_{n}\right)-\left(v_{m}, w_{m}\right)\right\|_{V \times W}<\epsilon \\
\left\|w_{n}-w_{m}\right\|_{W} & \leq\left\|\left(v_{n}, w_{n}\right)-\left(v_{m}, w_{m}\right)\right\|_{V \times W}<\epsilon
\end{aligned}
$$

which shows that $\left(v_{n}\right)_{n}$ is a Cauchy sequence in V and $\left(w_{n}\right)_{n}$ is a Cauchy sequence in W. Since $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ are assumed to be complete, there is $v \in V$ with $v_{n} \rightarrow v$ as $n \rightarrow \infty$ and there is $w \in W$ with $w_{n} \rightarrow w$ as $n \rightarrow \infty$.

Conversely, if $\left(V \times W,\|\cdot\|_{V \times W}\right.$ is a Banach space and $\left(v_{n}\right)_{n}$ is a Cauchy sequence we can consider the sequence $\left(v_{n}, 0\right)$ in $V \times W$. This is a Cauchy sequence and thus converges. If (v, w) is the limit, then (apart from the fact that w needs to be zero) we have

$$
\left\|v_{n}-v\right\|_{W} \leq\left\|\left(v_{n}-v, w\right)\right\|_{V \times W}
$$

where the right hand side goes to zero. Hence, $\left(v_{n}\right)_{n}$ converges to v. Similarly, one shows that any Cauchy sequence in W converges.
2. We first note that by definiton of the quotient norm, the quotient map

$$
\pi: V \rightarrow V / W, \quad v \mapsto v+W
$$

is 1-Lipschitz and in particular continuous. In particular, the quotient topology $\tau_{\text {quot }}$ contains the topology induced by the norm $\tau_{\text {norm }}$.

For the other inclusion, let $U \subset V / W$ such that $U^{\prime}=\pi^{-1}(U)$ is open (in the norm topology). Let $v_{0}+W \in U$ and choose $\epsilon>0$ such that $B_{\epsilon}\left(v_{0}\right) \subset U^{\prime}$. Note that then for any $w \in W$

$$
B_{\epsilon}\left(v_{0}+w\right)=B_{\epsilon}\left(v_{0}\right)+w \subset U^{\prime}
$$

as $U^{\prime}-w=U^{\prime}$. We claim that $B_{\epsilon}\left(v_{0}+W\right) \subset U$. Indeed, if $\left\|(v+W)-\left(v_{0}+W\right)\right\|_{V / W}<$ ϵ there is $w \in W$ with $\left\|v-\left(v_{0}+w\right)\right\|<\epsilon$ i.e.

$$
v \in B_{\epsilon}\left(v_{0}+w\right) \subset U^{\prime}
$$

so $v+W \in U$. This concludes the proof.
3. a) That W is a subspace follows from the linearity of the intregral. To see that W is closed we just need to check that the maps

$$
\begin{aligned}
& f \in C([-1,1]) \mapsto \int_{-1}^{0} f(x) \mathrm{d} x \\
& f \in C([-1,1]) \mapsto \int_{0}^{1} f(x) \mathrm{d} x
\end{aligned}
$$

are continuous. In fact, they are both 1-Lipschitz as for any $f, g \in C([-1,1])$

$$
\left|\int_{-1}^{0} f(x)-g(x) \mathrm{d} x\right| \leq \int_{-1}^{0}|f(x)-g(x)| \mathrm{d} x \leq\|f-g\|_{\infty}
$$

and similarly for the second map.
b) Define a bounded function $g:[-1,1] \mapsto \mathbb{R}$ through $g(x)=x+\frac{1}{2}$ for $x<0$ and $g(x)=x-\frac{1}{2}$ for $x \geq 0$. Then $|f(x)-g(x)|=\frac{1}{2}$ for any $x \in[-1,1]$ but notice that g is not continuous.
We now approximate g by continuous functions. For $\epsilon>0$ define

$$
h_{\epsilon}(x)= \begin{cases}x+\frac{1}{2}+\epsilon & x<-\delta \\ m x & -\delta \leq x \leq \delta \\ x-\frac{1}{2}-\epsilon & x>\delta\end{cases}
$$

where m is chosen such that h is continuous and δ is chosen such that $h \in W$. Explicitly, $m=1-\frac{\epsilon+\frac{1}{2}}{\delta}$ and a computation shows that

$$
\int_{-1}^{0} h_{\epsilon}(x) \mathrm{d} x=0
$$

is equivalent to $\delta=\frac{2 \epsilon}{\epsilon+\frac{1}{2}}$ (which is in $[0,1]$ for $\epsilon>0$ small enough).
Now one can estimate the norm $\left\|g-h_{\epsilon}\right\|_{\infty}$ or proceed directly to obtain $\| f-$ $h_{\epsilon} \|_{\infty}<\frac{1}{2}+\epsilon$. Indeed, for $x \in[-1,-\delta] \cup[\delta, 1]$ the estimate $\left|f(x)-h_{\epsilon}(x)\right| \leq \frac{1}{2}+\epsilon$ is clear from the definition of h_{ϵ} and for $x \in[-\delta, \delta]$ we have

$$
\left|f(x)-h_{\epsilon}(x)\right| \leq|1-m||x| \leq|1-m| \delta=\epsilon+\frac{1}{2} .
$$

This shows that $\|f\|_{W}<\frac{1}{2}+\epsilon$. For the lower bound notice that

$$
\begin{equation*}
\frac{1}{2}=\int_{0}^{1}(x+h(x)) \mathrm{d} x \leq\|f+h\|_{\infty} \tag{1}
\end{equation*}
$$

for any $h \in W$. This concludes part b).
c) The inequality in (1) implies that $x+h(x)=\frac{1}{2}$ for all $x \geq 0$ if $h \in W$ was a function archieving the infimum. Since the analogous statement holds true on the interval $[-1,0]$ the function h is actually the function $-g$ defined in \mathbf{b}), thus discontinuous in 0 .

4. Alternative 1 :

Let Y be the set of Cauchy-sequences in X and define for $y, y^{\prime} \in Y$

$$
\delta\left(y, y^{\prime}\right)=\lim _{n \rightarrow \infty} \mathrm{~d}\left(y_{n}, y_{n}^{\prime}\right)
$$

where the limit exists as both y, y^{\prime} are Cauchy. The function δ is a metric except for the fact that there are distinct elements $y, y^{\prime} \in Y$ with $\delta\left(y, y^{\prime}\right)=0$ (i.e. δ is a semi-metric). The latter relation defines an equivalence relation \sim on Y and we let $X^{*}=Y / \sim$. Then

$$
\mathrm{d}^{*}\left([y]_{\sim},\left[y^{\prime}\right]_{\sim}\right)=\delta\left(y, y^{\prime}\right)
$$

for $y, y^{\prime} \in Y$ defines a metric d^{*} on X^{*}. An inclusion ι of X into X^{*} is given by

$$
\iota(x)=[(x, x, x, \ldots)]_{\sim}
$$

and one checks as in the proof of Theorem 2.32 that all required properties are satisfied.

Alternative 2:

Consider the function defined in the hint

$$
\Phi: x \in X \mapsto f_{x} \in B(X)
$$

where $x_{0} \in X$ is fixed, $B(X)$ is the Banach space of bounded, real-valued functions on X and $f_{x}: X \rightarrow \mathbb{R}$ is defined by $f_{x}(y)=\mathrm{d}(x, y)-\mathrm{d}\left(x_{0}, y\right)$ for $y \in X$.

We first claim that Φ is an isometry. In fact, for $x \in X$ we have

$$
\left\|f_{x}\right\|_{\infty}=\sup _{y \in X}\left|\mathrm{~d}(x, y)-\mathrm{d}\left(x_{0}, y\right)\right| \leq \mathrm{d}\left(x, x_{0}\right)
$$

by the triangle inequality and conversely $\mathrm{d}\left(x, x_{0}\right)=\left|f_{x}\left(x_{0}\right)\right| \leq\left\|f_{x}\right\|_{\infty}$. Hence, Φ is an isometry and in particular, injective and continuous.

Let X^{*} be the closure of the image of Φ in $B(X)$, which we equip with the metric d^{*} coming from the metric on $B(X)$ (the latter is induced by $\|\cdot\|_{\infty}$). The argument of 1a) shows that $\left(X^{*}, \mathrm{~d}^{*}\right)$ is complete.
5. a) We refer directly to Example 2.24(7) for $p \in[1, \infty)$ and to Example 2.24(2) for $p=\infty$. Note that $\ell^{p}(\mathbb{N})$ can be viewed as $L_{\mu}^{p}(X)$ for the measure space (X, \mathcal{B}, μ) where $X=\mathbb{N}, \mathcal{B}=\mathcal{P}(X)$ and μ is the counting measure.
b) We show two things: (i) $c_{0}(\mathbb{N})$ is closed and (ii) $c_{c}(\mathbb{N})$ is dense in $c_{0}(\mathbb{N})$ with respect to the topology of ℓ^{∞}.
For (i) let $\left(x^{(k)}\right)_{k}$ be a sequence in $c_{0}(\mathbb{N})$ and assume that $x^{(k)} \rightarrow x \in \ell^{\infty}(\mathbb{N})$ as $k \rightarrow \infty$. For $\epsilon>0$ let $k \in \mathbb{N}$ be such that

$$
\left\|x^{(k)}-x\right\|_{\infty}<\epsilon
$$

(as $x^{(k)} \rightarrow x$ in ℓ^{∞}) and let $N \in \mathbb{N}$ be such that $\left|x_{n}^{(k)}\right|<\epsilon$ for all $n \geq N$ (as $x^{(k)} \in c_{0}(\mathbb{N})$). Then for any $n \geq N$

$$
\left|x_{n}\right| \leq\left|x_{n}^{(k)}-x_{n}\right|+\left|x_{n}^{(k)}\right| \leq\left\|x^{(k)}-x\right\|_{\infty}+\epsilon<2 \epsilon .
$$

This shows that $\lim _{n \rightarrow \infty} x_{n}=0$ and hence $c_{0}(\mathbb{N})$ is closed.
For (ii) we let $x \in c_{0}(\mathbb{N})$ and $\epsilon>0$. Let N be large enough such that $\left|x_{n}\right|<\epsilon$ for all $n \geq N$. We define $y \in c_{c}(\mathbb{N})$ by $y_{n}=x_{n}$ for $n<N$ and $y_{n}=0$ for $n \geq N$. Then for any $n \in \mathbb{N}$ we have $\left|y_{n}-x_{n}\right|=0$ if $n<N$ and $\left|y_{n}-x_{n}\right|=\left|x_{n}\right|<\epsilon$ otherwise. Thus, $\|y-x\|_{\infty}<\epsilon$.
c) Let $x \in \ell^{p_{1}}(\mathbb{N})$. To prove the desired inequality we can assume that $\|x\|_{p_{1}}=1$: otherwise we replace x by $\frac{x}{\|x\|_{p_{1}}}=x^{\prime}$ which has norm one and which satisfies $\left\|x^{\prime}\right\|_{p_{2}} \leq 1$ if and only if $\|x\|_{p_{1}} \geq\|x\|_{p_{2}}$ holds.
Notice that $\|x\|_{p_{1}}=1$ implies that $\left|x_{n}\right| \leq\|x\|_{p_{1}}=1$ for all n. In particular, if $p_{2}<\infty$ we obtain

$$
\left|x_{n}\right|^{p_{2}} \leq\left|x_{n}\right|^{p_{1}}
$$

and summing over n yields the desired inequality. Otherwise, $\left|x_{n}\right| \leq 1$ for all n directly implies $\|x\|_{\infty} \leq 1$.
d) If $\|x\|_{p_{1}}<\infty$ then $\|x\|_{p_{2}}<\infty$ by c) so $\ell^{p_{1}} \subset \ell^{p_{2}}$.

To see that $\ell^{p_{1}} \neq \ell^{p_{2}}$ for $p_{2}<\infty$ consider the sequence $x=\left(x_{n}\right)_{n}$ defined by $x_{n}=\frac{1}{n^{\frac{1}{p}}}$ for all $n \in \mathbb{N}$ where $p=\frac{p_{1}+p_{2}}{2} \in\left(p_{1}, p_{2}\right)$. Recall that the series $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ for $\alpha \in \mathbb{R}$ is (absolutely) convergent if and only if $\alpha>1$. Then

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{p_{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{p_{2}}{p}}}
$$

is convergent $\left(\alpha=\frac{p_{2}}{p}>1\right)$ and

$$
\sum_{n=1}^{\infty}\left|x_{n}\right|^{p_{1}}=\sum_{n=1}^{\infty} \frac{1}{n^{\frac{p_{1}}{p}}}
$$

is divergent ($\alpha=\frac{p_{1}}{p}<1$) as desired.
If $p_{2}=\infty$ we can take the constant sequence $x=\left(x_{n}\right)_{n}$ with $x_{n}=1$ for all n, which is clearly bounded and thus element of ℓ^{∞}. Since it is not a nullsequence, $x \notin \ell^{p_{1}}$.
e) Suppose that $\|\cdot\|_{p_{1}}$ and $\|\cdot\|_{p_{2}}$ are equivalent and note that by c) the inequality $\|\cdot\|_{p_{2}} \leq\|\cdot\|_{p_{1}}$ cannot yield a contradiction. Let $c \geq 1$ with

$$
\begin{equation*}
\|x\|_{p_{1}} \leq\|x\|_{p_{2}} \tag{2}
\end{equation*}
$$

for all $x \in c_{c}(\mathbb{N})$. For any $N \in \mathbb{N}$ we define $x^{(N)} \in c_{c}(\mathbb{N})$ by $x_{n}=1$ if $n \leq N$ and $x_{n}=0$ if $n>N$. Therefore, for any p

$$
\left\|x^{(N)}\right\|_{p}=\left(\sum_{n=1}^{N} 1\right)^{\frac{1}{p}}=N^{\frac{1}{p}}
$$

Plugging this into (2) we obtain $N^{\frac{1}{p_{1}}} \leq c N^{\frac{1}{p_{2}}}$ and therefore

$$
N^{\frac{p_{2}}{p_{1}}} \leq c^{p_{2}}
$$

Since $p_{2}>p_{1}$ this cannot be true for all N as $N^{\frac{p_{2}}{p_{1}}} \rightarrow \infty$ as $N \rightarrow \infty$.
f) We first claim that it suffices to consider $x \in c_{c}(\mathbb{N})$. For this, recall that $c_{c}(\mathbb{N}) \subset$ $\ell^{p}(\mathbb{N})$ is dense for any p. So given $x \in \ell^{q}(\mathbb{N})$ as in the statement of the exercise and given $\epsilon>0$ we let $x^{\prime} \in c_{c}(\mathbb{N})$ so that $\left\|x-x^{\prime}\right\|_{q}<\epsilon$. By c) this implies $\left\|x-x^{\prime}\right\|_{p}<\epsilon$ for any $\infty \geq p \geq q$. Therefore, by the triangle inequality

$$
\begin{equation*}
\left\|x^{\prime}\right\|_{p}-\epsilon \leq\left\|x^{\prime}\right\|_{p}-\left\|x-x^{\prime}\right\|_{p} \leq\|x\|_{p} \leq\left\|x^{\prime}\right\|_{p}+\left\|x-x^{\prime}\right\|_{p} \leq\left\|x^{\prime}\right\|_{p}+\epsilon \tag{3}
\end{equation*}
$$

Since we assume that $\lim _{n \rightarrow \infty}\left\|x^{\prime}\right\|_{p}=\left\|x^{\prime}\right\|_{\infty}$ is already known, this shows that

$$
\limsup _{p \rightarrow \infty}\left(\|x\|_{p}-\|x\|_{\infty}\right) \leq \limsup _{p \rightarrow \infty}\left(\left(\left\|x^{\prime}\right\|_{p}+\epsilon\right)-\left(\left\|x^{\prime}\right\|_{\infty}-\epsilon\right)\right)=2 \epsilon
$$

Since ϵ was arbitrary we have proven $\lim \sup _{p \rightarrow \infty}\left(\|x\|_{p}-\|x\|_{\infty}\right)=0$. On the other hand, by c) we have

$$
0 \leq \liminf _{p \rightarrow \infty}\left(\|x\|_{p}-\|x\|_{\infty}\right) \leq \limsup _{p \rightarrow \infty}\left(\|x\|_{p}-\|x\|_{\infty}\right)
$$

This concludes the proof of the claim and we may assume that $x \in c_{c}(\mathbb{N})$.
For $x \in c_{c}(\mathbb{N})$ and any $p \in[1, \infty)$ we note that

$$
\|x\|_{p}=\left(\sum_{n=1}^{N}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}=\|x\|_{\infty}\left(\sum_{n=1}^{N}\left(\frac{\left|x_{n}\right|}{\|x\|_{\infty}}\right)^{p}\right)^{\frac{1}{p}}
$$

when $N \in \mathbb{N}$ is such that $x_{n}=0$ for every $n>N$. Since $\frac{\left|x_{n}\right|}{\|x\|_{\infty}} \leq 1$ for all n and equal to 1 for some n (here we use $x \in c_{c}(\mathbb{N})$), we have

$$
\|x\|_{\infty} \leq\|x\|_{p} \leq\|x\|_{\infty} N^{\frac{1}{p}}
$$

Since $\lim _{p \rightarrow \infty} N^{\frac{1}{p}}=1$, this shows the claim in the exercise.
6. Consider for a function $\alpha: \mathbb{R} \rightarrow \mathbb{R}$ with $\alpha(0)=0$ the map

$$
\varphi: \mathbb{R} \rightarrow \mathbb{R}^{2}, \quad t \mapsto(t, \alpha(t))
$$

We now choose α correctly so that φ is a non-linear isometry. If for any $s, t \in \mathbb{R}$

$$
\begin{equation*}
|\alpha(s)-\alpha(t)| \leq|s-t| \tag{4}
\end{equation*}
$$

is satisfied, φ is an isometry as

$$
\|\varphi(s)-\varphi(t)\|_{\infty}=\max \{|s-t|,|\alpha(s)-\alpha(t)|\}=|s-t|
$$

for all $s, t \in \mathbb{R}$. It remains to choose α as in (4) so that φ is non-linear. For instance, if α is differentiable and the derivative is bounded by 1 , the mean value theorem implies that (4) is satisfied. An example of such a function is $\sin : \mathbb{R} \rightarrow \mathbb{R}$, which is also non-linear.

The given example does not contradict the Theorem of Mazur and Ulam as φ is clearly not surjective and as \mathbb{R}^{2} with the norm $\|\cdot\|_{\infty}$ is not strictly subadditive. The latter follows from the calculation

$$
\left\|2 e_{1}\right\|_{\infty}=\left\|e_{1}-e_{2}\right\|_{\infty}+\left\|e_{1}+e_{2}\right\|_{\infty}
$$

where e_{1}, e_{2} form the standard basis of \mathbb{R}^{2}.

