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1. a) Assume first that (W, ‖·‖) is complete and let (wn)n be a sequence in W which
converges in V to a point w ∈ V . Then (wn)n is in particular a Cauchy sequence
and therefore has a limit in W . By uniqueness of limits in V , this limit is equal
to w so w ∈ W .

Assume that W is closed and let (wn)n is a Cauchy sequence in W . In particular,
(wn)n is a Cauchy sequence in V and since V is complete, it has a limit w ∈ V .
As W is closed, we must have w ∈ W so the Cauchy sequence converges in W .

b) Assume first that (V, ‖·‖V ) and (W, ‖·‖W ) are Banach spaces. Let ((vn, wn))n be
a Cauchy sequence in V ×W . For ε > 0 there is N ∈ N such that

‖(vn − vm, wn − wm)‖V×W = ‖(vn, wn)− (vm, wm)‖V×W < ε

for all m,n ≥ N . In particular,

‖vn − vm‖V ≤ ‖(vn, wn)− (vm, wm)‖V×W < ε

‖wn − wm‖W ≤ ‖(vn, wn)− (vm, wm)‖V×W < ε

which shows that (vn)n is a Cauchy sequence in V and (wn)n is a Cauchy se-
quence in W . Since (V, ‖·‖V ) and (W, ‖·‖W ) are assumed to be complete, there
is v ∈ V with vn → v as n→∞ and there is w ∈ W with wn → w as n→∞.

Conversely, if (V ×W, ‖·‖V×W is a Banach space and (vn)n is a Cauchy sequence
we can consider the sequence (vn, 0) in V ×W . This is a Cauchy sequence and
thus converges. If (v, w) is the limit, then (apart from the fact that w needs to be
zero) we have

‖vn − v‖W ≤ ‖(vn − v, w)‖V×W

where the right hand side goes to zero. Hence, (vn)n converges to v. Similarly,
one shows that any Cauchy sequence in W converges.

2. We first note that by definiton of the quotient norm, the quotient map

π : V → V/W, v 7→ v +W
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is 1-Lipschitz and in particular continuous. In particular, the quotient topology τquot
contains the topology induced by the norm τnorm.

For the other inclusion, let U ⊂ V/W such that U ′ = π−1(U) is open (in the norm
topology). Let v0 + W ∈ U and choose ε > 0 such that Bε(v0) ⊂ U ′. Note that then
for any w ∈ W

Bε(v0 + w) = Bε(v0) + w ⊂ U ′

asU ′−w = U ′. We claim thatBε(v0+W ) ⊂ U . Indeed, if ‖(v+W )−(v0+W )‖V/W <
ε there is w ∈ W with ‖v − (v0 + w)‖ < ε i.e.

v ∈ Bε(v0 + w) ⊂ U ′

so v +W ∈ U . This concludes the proof.

3. a) That W is a subspace follows from the linearity of the intregral. To see that W is
closed we just need to check that the maps

f ∈ C([−1, 1]) 7→
∫ 0

−1
f(x) dx

f ∈ C([−1, 1]) 7→
∫ 1

0

f(x) dx

are continuous. In fact, they are both 1-Lipschitz as for any f, g ∈ C([−1, 1])∣∣∣∣∫ 0

−1
f(x)− g(x) dx

∣∣∣∣ ≤ ∫ 0

−1
|f(x)− g(x)| dx ≤ ‖f − g‖∞

and similarly for the second map.

b) Define a bounded function g : [−1, 1] 7→ R through g(x) = x+ 1
2

for x < 0 and
g(x) = x− 1

2
for x ≥ 0. Then |f(x)− g(x)| = 1

2
for any x ∈ [−1, 1] but notice

that g is not continuous.

We now approximate g by continuous functions. For ε > 0 define

hε(x) =


x+ 1

2
+ ε x < −δ

mx −δ ≤ x ≤ δ

x− 1
2
− ε x > δ

where m is chosen such that h is continuous and δ is chosen such that h ∈ W .
Explicitly, m = 1− ε+ 1

2

δ
and a computation shows that∫ 0

−1
hε(x) dx = 0
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is equivalent to δ = 2ε
ε+ 1

2

(which is in [0, 1] for ε > 0 small enough).

Now one can estimate the norm ‖g − hε‖∞ or proceed directly to obtain ‖f −
hε‖∞ < 1

2
+ε. Indeed, for x ∈ [−1,−δ]∪[δ, 1] the estimate |f(x)−hε(x)| ≤ 1

2
+ε

is clear from the definition of hε and for x ∈ [−δ, δ] we have

|f(x)− hε(x)| ≤ |1−m||x| ≤ |1−m|δ = ε+
1

2
.

This shows that ‖f‖W < 1
2

+ ε. For the lower bound notice that

1

2
=

∫ 1

0

(x+ h(x)) dx ≤ ‖f + h‖∞ (1)

for any h ∈ W . This concludes part b).

c) The inequality in (1) implies that x + h(x) = 1
2

for all x ≥ 0 if h ∈ W was
a function archieving the infimum. Since the analogous statement holds true on
the interval [−1, 0] the function h is actually the function −g defined in b), thus
discontinuous in 0.

4. ALTERNATIVE 1:

Let Y be the set of Cauchy-sequences in X and define for y, y′ ∈ Y

δ(y, y′) = lim
n→∞

d(yn, y
′
n)

where the limit exists as both y, y′ are Cauchy. The function δ is a metric except for the
fact that there are distinct elements y, y′ ∈ Y with δ(y, y′) = 0 (i.e. δ is a semi-metric).
The latter relation defines an equivalence relation ∼ on Y and we let X∗ = Y/ ∼.
Then

d∗([y]∼, [y
′]∼) = δ(y, y′)

for y, y′ ∈ Y defines a metric d∗ on X∗. An inclusion ι of X into X∗ is given by

ι(x) = [(x, x, x, . . .)]∼

and one checks as in the proof of Theorem 2.32 that all required properties are satis-
fied.

ALTERNATIVE 2:

Consider the function defined in the hint

Φ : x ∈ X 7→ fx ∈ B(X)
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where x0 ∈ X is fixed, B(X) is the Banach space of bounded, real-valued functions
on X and fx : X → R is defined by fx(y) = d(x, y)− d(x0, y) for y ∈ X .

We first claim that Φ is an isometry. In fact, for x ∈ X we have

‖fx‖∞ = sup
y∈X
|d(x, y)− d(x0, y)| ≤ d(x, x0)

by the triangle inequality and conversely d(x, x0) = |fx(x0)| ≤ ‖fx‖∞. Hence, Φ is
an isometry and in particular, injective and continuous.

Let X∗ be the closure of the image of Φ in B(X), which we equip with the metric d∗

coming from the metric on B(X) (the latter is induced by ‖·‖∞). The argument of 1a)
shows that (X∗, d∗) is complete.

5. a) We refer directly to Example 2.24(7) for p ∈ [1,∞) and to Example 2.24(2) for
p =∞. Note that `p(N) can be viewed as Lpµ(X) for the measure space (X,B, µ)
where X = N, B = P(X) and µ is the counting measure.

b) We show two things: (i) c0(N) is closed and (ii) cc(N) is dense in c0(N) with
respect to the topology of `∞.

For (i) let (x(k))k be a sequence in c0(N) and assume that x(k) → x ∈ `∞(N) as
k →∞. For ε > 0 let k ∈ N be such that

‖x(k) − x‖∞ < ε

(as x(k) → x in `∞) and let N ∈ N be such that |x(k)n | < ε for all n ≥ N (as
x(k) ∈ c0(N)). Then for any n ≥ N

|xn| ≤ |x(k)n − xn|+ |x(k)n | ≤ ‖x(k) − x‖∞ + ε < 2ε.

This shows that limn→∞ xn = 0 and hence c0(N) is closed.

For (ii) we let x ∈ c0(N) and ε > 0. Let N be large enough such that |xn| < ε for
all n ≥ N . We define y ∈ cc(N) by yn = xn for n < N and yn = 0 for n ≥ N .
Then for any n ∈ N we have |yn − xn| = 0 if n < N and |yn − xn| = |xn| < ε
otherwise. Thus, ‖y − x‖∞ < ε.

c) Let x ∈ `p1(N). To prove the desired inequality we can assume that ‖x‖p1 = 1:
otherwise we replace x by x

‖x‖p1
= x′ which has norm one and which satisfies

‖x′‖p2 ≤ 1 if and only if ‖x‖p1 ≥ ‖x‖p2 holds.

Notice that ‖x‖p1 = 1 implies that |xn| ≤ ‖x‖p1 = 1 for all n. In particular, if
p2 <∞ we obtain

|xn|p2 ≤ |xn|p1

and summing over n yields the desired inequality. Otherwise, |xn| ≤ 1 for all n
directly implies ‖x‖∞ ≤ 1.
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d) If ‖x‖p1 <∞ then ‖x‖p2 <∞ by c) so `p1 ⊂ `p2 .

To see that `p1 6= `p2 for p2 < ∞ consider the sequence x = (xn)n defined
by xn = 1

n
1
p

for all n ∈ N where p = p1+p2
2
∈ (p1, p2). Recall that the series∑∞

n=1
1
nα

for α ∈ R is (absolutely) convergent if and only if α > 1. Then

∞∑
n=1

|xn|p2 =
∞∑
n=1

1

n
p2
p

is convergent (α = p2
p
> 1) and

∞∑
n=1

|xn|p1 =
∞∑
n=1

1

n
p1
p

is divergent (α = p1
p
< 1) as desired.

If p2 = ∞ we can take the constant sequence x = (xn)n with xn = 1 for all n,
which is clearly bounded and thus element of `∞. Since it is not a nullsequence,
x 6∈ `p1 .

e) Suppose that ‖·‖p1 and ‖·‖p2 are equivalent and note that by c) the inequality
‖·‖p2 ≤ ‖·‖p1 cannot yield a contradiction. Let c ≥ 1 with

‖x‖p1 ≤ ‖x‖p2 (2)

for all x ∈ cc(N). For any N ∈ N we define x(N) ∈ cc(N) by xn = 1 if n ≤ N
and xn = 0 if n > N . Therefore, for any p

‖x(N)‖p =

(
N∑
n=1

1

) 1
p

= N
1
p .

Plugging this into (2) we obtain N
1
p1 ≤ cN

1
p2 and therefore

N
p2
p1 ≤ cp2

Since p2 > p1 this cannot be true for all N as N
p2
p1 →∞ as N →∞.

f) We first claim that it suffices to consider x ∈ cc(N). For this, recall that cc(N) ⊂
`p(N) is dense for any p. So given x ∈ `q(N) as in the statement of the exercise
and given ε > 0 we let x′ ∈ cc(N) so that ‖x − x′‖q < ε. By c) this implies
‖x− x′‖p < ε for any∞ ≥ p ≥ q. Therefore, by the triangle inequality

‖x′‖p − ε ≤ ‖x′‖p − ‖x− x′‖p ≤ ‖x‖p ≤ ‖x′‖p + ‖x− x′‖p ≤ ‖x′‖p + ε. (3)
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Since we assume that limn→∞‖x′‖p = ‖x′‖∞ is already known, this shows that

lim sup
p→∞

(
‖x‖p − ‖x‖∞

)
≤ lim sup

p→∞

(
(‖x′‖p + ε)− (‖x′‖∞ − ε)

)
= 2ε

Since ε was arbitrary we have proven lim supp→∞
(
‖x‖p − ‖x‖∞

)
= 0. On the

other hand, by c) we have

0 ≤ lim inf
p→∞

(
‖x‖p − ‖x‖∞

)
≤ lim sup

p→∞

(
‖x‖p − ‖x‖∞

)
.

This concludes the proof of the claim and we may assume that x ∈ cc(N).

For x ∈ cc(N) and any p ∈ [1,∞) we note that

‖x‖p =

(
N∑
n=1

|xn|p
) 1

p

= ‖x‖∞

(
N∑
n=1

( |xn|
‖x‖∞

)p) 1
p

when N ∈ N is such that xn = 0 for every n > N . Since |xn|
‖x‖∞ ≤ 1 for all n and

equal to 1 for some n (here we use x ∈ cc(N)), we have

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖∞N
1
p .

Since limp→∞N
1
p = 1, this shows the claim in the exercise.

6. Consider for a function α : R→ R with α(0) = 0 the map

ϕ : R→ R2, t 7→ (t, α(t)).

We now choose α correctly so that ϕ is a non-linear isometry. If for any s, t ∈ R

|α(s)− α(t)| ≤ |s− t| (4)

is satisfied, ϕ is an isometry as

‖ϕ(s)− ϕ(t)‖∞ = max{|s− t|, |α(s)− α(t)|} = |s− t|

for all s, t ∈ R. It remains to choose α as in (4) so that ϕ is non-linear. For instance, if
α is differentiable and the derivative is bounded by 1, the mean value theorem implies
that (4) is satisfied. An example of such a function is sin : R → R, which is also
non-linear.

The given example does not contradict the Theorem of Mazur and Ulam as ϕ is clearly
not surjective and as R2 with the norm ‖·‖∞ is not strictly subadditive. The latter
follows from the calculation

‖2e1‖∞ = ‖e1 − e2‖∞ + ‖e1 + e2‖∞

where e1, e2 form the standard basis of R2.
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