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1.

a)

b)

Solutions for exercise sheet 2

Assume first that (IV, ||-||) is complete and let (w,,), be a sequence in W which
converges in V' to a point w € V. Then (w,,),, is in particular a Cauchy sequence
and therefore has a limit in 1/. By uniqueness of limits in V/, this limit is equal
towsow € W.

Assume that IV is closed and let (w,,),, is a Cauchy sequence in . In particular,
(wy), is a Cauchy sequence in V' and since V' is complete, it has a limit w € V.
As W is closed, we must have w € W so the Cauchy sequence converges in W.

Assume first that (V, ||-||y/) and (W, ||-||w ) are Banach spaces. Let ((v,,, wy,)),, be
a Cauchy sequence in V' x W. For € > 0 there is N € N such that

||(Un — U, Wy — wm)HVXW = ”(U’mwn) - (Umywm)HVXW <eE€

for all m,n > N. In particular,

an - UmHV S ||(Unawn) - (Um;wm)”VXW <e€

Hwn - meW S ”(Unawn) - (Umywm)HVXW <e€

which shows that (v,,), is a Cauchy sequence in V' and (w,,),, is a Cauchy se-
quence in W. Since (V, ||-||y/) and (W, ||-||w) are assumed to be complete, there
isv € V withv,, — v asn — oo and there is w € W with w,, — w as n — 00.

Conversely, if (V' x W, ||-||vxw is a Banach space and (v,,),, is a Cauchy sequence
we can consider the sequence (v,,,0) in V' x W. This is a Cauchy sequence and
thus converges. If (v, w) is the limit, then (apart from the fact that w needs to be
zero) we have

[on = vllw < [|(vn = v, w)[[vsw

where the right hand side goes to zero. Hence, (v,,),, converges to v. Similarly,
one shows that any Cauchy sequence in W converges.

2. We first note that by definiton of the quotient norm, the quotient map

7V a>V/IW, veo+W



is 1-Lipschitz and in particular continuous. In particular, the quotient topology Tquot
contains the topology induced by the norm 7,0,

For the other inclusion, let U C V/W such that U’ = 7~(U) is open (in the norm
topology). Let vg + W € U and choose ¢ > 0 such that B.(vy) C U’. Note that then
forany w e W

Be(vy +w) = Be(vg) +w C U’

as U'—w = U’. We claim that B (vo+W) C U.Indeed, if ||(v+W)—(vo+W)||v,w <
e there is w € W with ||v — (vg + w)]| < € i.e.

v € B(vg +w) C U’

sov + W € U. This concludes the proof.

a) That IV is a subspace follows from the linearity of the intregral. To see that IV is
closed we just need to check that the maps

fec(-11]) — » f(z)dz

rec-iy | fa) de

are continuous. In fact, they are both 1-Lipschitz as for any f, g € C([—1,1])

’ /_ i (@) — gla) da

and similarly for the second map.

< [ 1) - glar <1 -l

b) Define a bounded function g : [—1, 1] — R through g(z) = x + § for z < 0 and
g(z) = x — § forx > 0. Then |f(z) — g(z)| = 1 for any z € [—1, 1] but notice
that g is not contlnuous

We now approximate g by continuous functions. For € > 0 define

T+i+e v<—0
he(x) = < mx —6<x <4
1

T—5—¢ Tz >0

where m is chosen sucp that h is continuous and ¢ is chosen such that h € W.
Explicitly, m = 1 — <2 and a computation shows that

4
/0 he(z)dz = 0

-1



is equivalent to § = e—% (which is in [0, 1] for € > 0 small enough).

Now one can estimate the norm ||g — k.||~ or proceed directly to obtain || f —
hellso < 3+e€.Indeed, for x € [—1, —8]U[4, 1] the estimate | f(z) —he(z)| < 1+
is clear from the definition of . and for x € [—0, J] we have

1
(@) = he(2)] < [1 =mlz] < |1 —m|d = e+ .

This shows that || f||ws < 3 + €. For the lower bound notice that

1 1
: :/0 (2 + h(x) dz < |If + Bl ()

for any A € W. This concludes part b).

¢) The inequality in (1) implies that  + h(z) = § forall z > 0if h € W was

a function archieving the infimum. Since the analogous statement holds true on
the interval [—1, 0] the function h is actually the function —g defined in b), thus

discontinuous in 0.

4. ALTERNATIVE I:
Let Y be the set of Cauchy-sequences in X and define for y,7/ € Y
0(y,y') = lim d(yn, y,)

where the limit exists as both y, ¢/ are Cauchy. The function 0 is a metric except for the
fact that there are distinct elements i,y € Y with d(y,y’) = 0 (i.e. ¢ is a semi-metric).
The latter relation defines an equivalence relation ~ on Y and we let X* = Y/ ~.
Then

d"(lyl~, [y']~) = 6(y,y")
for y,y’ € Y defines a metric d* on X*. An inclusion ¢ of X into X* is given by
x) =[(x,z,z,...)]~

and one checks as in the proof of Theorem 2.32 that all required properties are satis-
fied.

ALTERNATIVE 2:
Consider the function defined in the hint

b:re X — f, € B(X)



S.

where xy € X is fixed, B(X) is the Banach space of bounded, real-valued functions
on X and f, : X — Risdefined by f,(y) = d(z,y) — d(xg,y) fory € X.

We first claim that ® is an isometry. In fact, for x € X we have

||f93||00 = sup |d<£(],y) - d(l’o,y)| S d(I,:L‘O)
yeX

by the triangle inequality and conversely d(x, z) = |f.(z0)| < || fz|lo- Hence, ® is
an isometry and in particular, injective and continuous.

Let X™* be the closure of the image of ® in B(X), which we equip with the metric d*
coming from the metric on B(X) (the latter is induced by ||-||). The argument of 1a)
shows that (X*, d*) is complete.

a) We refer directly to Example 2.24(7) for p € [1, 00) and to Example 2.24(2) for
p = oo. Note that ((N) can be viewed as L?,(X) for the measure space (X, B, 1)
where X = N, B = P(X) and p is the counting measure.

b) We show two things: (i) co(N) is closed and (ii) ¢.(N) is dense in c¢o(N) with
respect to the topology of ¢*°.

For (i) let (2*)); be a sequence in cy(N) and assume that 2*) — z € /*(N) as
k — oo. For e > 0 let k € N be such that

||x(k) — |0 < €

(as z®) — x in ¢>) and let N € N be such that |x$tk)| < eforalln > N (as
) € ¢y(N)). Then for any n > N

|z, | < |a:7(f) Tn| + |x \ < ||J: — |0 + € < 2.
This shows that lim,,_,, x,, = 0 and hence ¢,(N) is closed.

For (ii) we let z € ¢o(N) and € > 0. Let IV be large enough such that |z,,| < € for
all n > N. We define y € ¢.(N) by y,, = x,, forn < N and y,, = 0 forn > N.
Then for any n € N we have |y, — z,| = 0if n < N and |y, — z,,| = |z,| < €
otherwise. Thus, ||y — z|[o < €.

¢) Let 2 € (7*(N). To prove the desired inequality we can assume that ||z[[,, = 1:
otherwise we replace = by . ” = 2’ which has norm one and which satisfies

|'||p, < 1if and only if ||z||,, > HprQ holds.

Notice that ||z||,, = 1 implies that |z,| < ||z||,, = 1 for all n. In particular, if
po < 00 We obtain

|In|p2 S ‘In‘Pl

and summing over n yields the desired inequality. Otherwise, |z,,| < 1 for all n
directly implies ||z]|s < 1.



d)

e)

If ||z||,, < oo then ||z||,, < coby c)so P C P2

To see that P = (P2 for po < oo consider the sequence © = (), defined
by z, = — foralln € N where p = £ 1;”’2 € (p1,p2). Recall that the series

Yo na for a € Ris (absolutely) convergent if and only if o > 1. Then

1
Sl -3
n= 1np
is convergent (o = % > 1) and
=1
Sl =3
n=1 17"

is divergent (o = B < 1) as desired.

If p, = oo we can take the constant sequence © = (x,,), with z,, = 1 for all n,

which is clearly bounded and thus element of ¢°°. Since it is not a nullsequence,
x & P,

Suppose that ||-||,, and ||-||,, are equivalent and note that by c) the inequality
o2 < |I*|lp, cannot yield a contradiction. Let ¢ > 1 with

2]l < [l 2)

for all z € c.(N). For any N € N we define 2V € ¢, (N) by x,, = 1ifn < N
and z,, = 0if n > N. Therefore, for any p

1
N P
n=1

Plugging this into (2) we obtain NV oy <cN » and therefore
NZ < o

p2
Since p, > p; this cannot be true for all N as N»1 — coas N — oo.

We first claim that it suffices to consider x € c.(N). For this, recall that ¢.(N) C
(?(N) is dense for any p. So given = € ¢4(N) as in the statement of the exercise
and given € > 0 we let 2/ € ¢.(N) so that ||z — 2’||, < e. By c) this implies
|z — 2'||, < € for any co > p > ¢. Therefore, by the triangle inequality

[ lp — € < fl"llp, = Nl = 2"ll, < [l < [’y + lle = 2"ll, < [l27]l, + e (3)



Since we assume that lim,,_,.||2’||, = ||2/||~ is already known, this shows that

limsup (2], — [[2]lx) < limsup (2], + €) = ("l — €)) = 2

p—o0 p—o0

Since € was arbitrary we have proven limsup, ., (||z]l, — ||z[|s) = 0. On the
other hand, by c) we have

0 < timinf (el — [l2]lo) < limsup (el — 1]
p—o0 P—00

This concludes the proof of the claim and we may assume that = € ¢.(N).

For = € ¢.(N) and any p € [1, 00) we note that

() )

n=1

when N € N is such that z,, = 0 for every n > N. Since [n] < 1 for all n and

ll]loo

equal to 1 for some n (here we use = € c.(N)), we have
1
2]l < [lllp < llzlloo N7

1
Since lim,, ,., N» = 1, this shows the claim in the exercise.

6. Consider for a function o : R — R with «(0) = 0 the map
0:R—=R* t (tat)).
We now choose « correctly so that ¢ is a non-linear isometry. If for any s,¢ € R
|ouls) — a(t)] < [s — ] )
is satisfied,  is an isometry as
le(s) = () lloo = max{ls —t],|a(s) — a(t)[} = |s — 1|

for all s,¢ € R. It remains to choose « as in (4) so that ¢ is non-linear. For instance, if
« 1s differentiable and the derivative is bounded by 1, the mean value theorem implies
that (4) is satisfied. An example of such a function is sin : R — R, which is also
non-linear.

The given example does not contradict the Theorem of Mazur and Ulam as ¢ is clearly
not surjective and as R? with the norm ||-|| is not strictly subadditive. The latter
follows from the calculation

12€1]|cc = [le1 — €2l + [le1 + €200

where e, e; form the standard basis of R2.



