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1. If L is bounded, any v1, v2 ∈ V are distinct we can write

‖L(v1)− L(v2)‖W = ‖L(v1 − v2)‖W = ‖v1 − v2‖V ‖L(v)‖W
where v = v1−v2

‖v1−v2‖V
has norm one. By definition of the operatornorm

‖L(v1)− L(v2)‖W = ‖v1 − v2‖V ‖L(v)‖W ≤ ‖v1 − v2‖V ‖L‖op
so L is ‖L‖op-Lipschitz.

Conversely, if L is K-Lipschitz we have

‖L(v)‖W = ‖L(v)− L(0)‖W ≤ K‖v‖V ≤ K

for any v ∈ V with ‖v‖V ≤ 1. Thus, L is bounded and ‖L‖op ≤ K.

This discussion shows that a bounded operator L satisfies ‖L‖op ≤ K and so
‖L‖op is indeed the smallest Lipschitz-constant.

2. a) Since ‖·‖C1([0,1]) ≥ ‖·‖∞ the operator norm ‖ϕ‖op is certainly bounded by 1 (see
also Exercise 1). As the constant function x ∈ [0, 1] 7→ 1 has norm 1 for the
C1-norm as well as the supremum norm, the operator norm is exactly 1.

b) a) implies that ‖ϕ0‖op ≤ 1. The polynomial function p : x ∈ [0, 1] 7→ x satisfies
p′ = 1 so ‖p‖∞ = 1 = ‖p‖C1([0,1]). This shows ‖ϕ0‖op = 1.

c) If f ∈ C([0, 1]) we have

‖f‖1 =

∫ 1

0

|f(x)| dx ≤ ‖f‖∞

so ‖ψ‖op ≤ 1. Furthermore, ‖1‖1 = ‖1‖∞ = 1 so equality holds.

d) Lemma 2.57 implies that ‖ψ◦ψ0‖op ≤ 1. However, we claim that in this case ‖ψ◦
ψ0‖op = 1

2
. To see this, let f ∈ C1([0, 1]) with f(0) = 0 and with ‖f‖C1([0,1]) ≤

1. Then ∫ 1

0

|f(x)| dx =

∫ 1

0

∣∣∣ ∫ x

0

f ′(t) dt dx
∣∣∣ ≤ ∫ 1

0

∫ x

0

|f ′(t)| dt dx

≤
∫ 1

0

∫ x

0

1 dt dx =
1

2
.
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This shows that ‖ψ ◦ ψ0‖op ≤ 1
2
. Since equality ‖f‖1 = 1

2
‖f‖C1([0,1]) holds for

the polynomial f = p from b), we conclude ‖ψ ◦ ψ0‖op = 1
2
.

3. a) Certainly, ‖Lleft‖op ≤ 1 as for any x ∈ `2(N)

∞∑
n=2

|xn|2 ≤
∞∑
n=1

|xn|2.

Equality holds whenever x1 = 0 so ‖Lleft‖op = 1. Lleft is not an isometry, as it is
not injective.

To compute the eigenvalues of Lleft (if there are any), we assume that Lleft(x) =
λx for some non-zero x ∈ `2(N) and λ ∈ C. Then

(λx1, λx2, λx3, . . .) = (x2, x3, x4, . . .)

and so xk+1 = λxk for all k ∈ N. Induction shows that xk = λk−1x1 for all
k ∈ N. This shows that

x = (x1, λx1, λ
2x1, . . .) = x1(1, λ, λ

2, . . .)

Since x 6= 0 and thus x1 6= 0 we may assume that x1 = 1. Note that the series∑
k=1 |λ|2k is convergent by assumption (as it is equal to ‖x‖22) and therefore

|λ| < 1. The set of eigenvalues of Lleft is hence the open unit ball in the complex
plane.

b) As in a) we assume that Lright(x) = λx for some non-zero x ∈ `2(N) and λ ∈ C.
Then λ 6= 0 as Lright is injective and

(λx1, λx2, λx3, . . .) = (0, x1, x2, . . .).

Thus, x1 = 0 as λx1 = 0, x2 = 0 as λx2 = x1 = 0 and so forth shows that x = 0
which is a contradiction. The operator Lright has hence no eigenvalues.

4. We may assume without loss of generality that there is a point x0 ∈ K \L (otherwise
we exchange K and L everywhere). Let R > 0 be such that the interval [−R,R] con-
tains K and L. By Urysohn’s lemma (see Sheet 0) there is a function f ∈ C([−R,R])
with f |L = 0 and f(x0) = 1. For n ∈ N the Stone-Weierstrass Theorem implies that
there is a polynomial pn ∈ R[x] with ‖pn|[−R,R] − f‖∞ < 1

n
. This polynomial pn sa-

tisfies pn(x0) > 1− 1
n

and |pn(x)| < 1
n

for all x ∈ L. This shows that ‖pn‖L ≤ 1
n

and
‖pn‖K ≥ 1 − 1

n
and thus (see for instance Sheet 1, Exercise 2) the norms ‖·‖K , ‖·‖L

are not equivalent.
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5. Let us first show that any compact set A ⊂ `p(N) has uniformly small tails. This
proves one direction of the claim as any compact set is closed (in any Hausdorff space)
and bounded. Fix ε > 0 and consider for every N the set

UN =

{
x ∈ `p(N) :

∞∑
n=N

|xn|p < ε

}
.

The collection of these open sets (which is increasing in N ) for varying N covers
`p(N) and in particular A. Thus, there is N ∈ N with UN ⊃ A which is what we
claimed.

Now let A ⊂ `p(N) be a closed, bounded subset which has uniformly small tails.
It suffices to show that a sequence (x(n))n has a subsequence, which is a Cauchy
sequence. Indeed, `p(N) is complete (see Sheet 2) and the so chosen subsequence
must converge. The limit is in A so A is sequentially compact and thus compact.

To this end, notice that as for any k the sequence (x
(n)
k )n has a convergent subsequence

(and in particular, a Cauchy subsequence) as it is bounded1. In fact, there are nj such
that x(nj)

k is a Cauchy-sequence for every k. Indeed, one chooses iteratively subsets
J1 ⊃ J2 ⊃ . . . such that (x

(n)
k )n∈Jk is convergent and then considers a sequence

n1 < n2 < n3 < . . . with nk ∈ Jk for every k. This diagonal argument follows more
conceptually from Tychonoff’s Theorem (see Sheet 0 and the solutions thereof).

To simplify notation, we assume that (x
(n)
k )n is convergent for every k. Now let ε > 0

and choose K ∈ N such that
∑∞

k=K+1 |xk|p <
εp

2
for every x ∈ A. This implies that

∞∑
k=K+1

|x(n)k − x
(m)
k |

p < εp

for every m,n ∈ N. Also, we may fix N ∈ N such that

|x(n)k − x
(m)
k | <

ε

K

for all k ∈ {1, . . . , K} and all m,n ≥ N . Overall we obtain

∞∑
k=1

|x(n)k − x
(m)
k |

p =
K∑
k=1

|x(n)k − x
(m)
k |

p +
∞∑

k=K+1

|x(n)k − x
(m)
k |

p < K
Kp ε

p + εp < 2εp

or in other words ‖x(n)− x(m)‖p < 2
1
p ε for all m,n ≥ N . This shows that (x(n))n is a

Cauchy-sequence and thus we conclude that A is compact.

For c0(N) the analogous criterion can be applied and the proof is also analogous. Note
that one can also apply Exercise 6 for X = N.

1If M > 0 is such that ‖x‖p ≤M for all x ∈ A, then |xk| ≤M for all k ∈ N and x ∈ A.
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6. We claim that the following extended version is true.

Theorem (Arzela-Ascoli) Let (X, d) be a locally-compact metric space and let A ⊂
C0(X). Then A is compact if and only if the following three conditions hold: (i) A
is closed and bounded, (ii) A is equicontinuous and (iii) A has uniform decay i.e. for
every ε > 0 there is a compact set K ⊂ X such that |f(x)| < ε for all f ∈ A and
x 6∈ K.

Before turning to the proof let us note that there is a slight subtlety in the definition of
equicontinuity. Indeed, in the lecture this notion was only introduced in the context of
a compact metric space where any continuous function is uniformly continuous. We
will call A equicontinuous at a point x ∈ X if for every ε > 0 there is a δ > 0 such
that

d(y, x) < δ =⇒ |f(y)− f(x)| < ε

for all f ∈ A. Furthermore, A is equicontinuous if it is equicontinuous at every point
in X . One checks that this notion of equicontinuity coincides with the other notion for
the compact case.

We now turn to the proof of the theorem and assume first thatA is compact. Condition
(i) then follows immediately as any compact subset of a metric space is closed and
bounded. Condition (iii) follows by considering for ε > 0 fixed and a varying compact
subset K ⊂ X the open set

UK = {f ∈ C0(X) : |f(x)| < ε for all x 6∈ K}.

We thus obtain an open cover of X (and in particular of A) by definition of vanishing
at infinity. So let K1, . . . , Km ⊂ X be compact sets with A ⊂ UK1 ∪ . . . ∪ UKm and
set K = K1 ∪ . . .∪Km. If f ∈ A and x 6∈ K then we can pick some 1 ≤ j ≤ m with
f ∈ UKj

and thus |f(x)| < ε as x 6∈ Kj ⊂ K.

It remains to show thatA is equicontinuous. For this, we introduce for a given compact
subset K ⊂ X the bounded operator2

ΦK : C0(X)→ C(K), f 7→ f |K .

Since A is compact, the image ΦK(A) is compact. If we apply this to a compact
neighborhood Kx of a point x ∈ X we obtain from the already proven version of
Arzela-Ascoli that the family f |Kx for f ∈ A is equicontinuous, which implies equi-
continuity of A at x.

Assume now that A satisfies conditions (i)-(iii) and let (fn)n be a sequence in A. As
C0(X) is complete (see Example 2.24) it suffices to find a Cauchy-subsequence of

2In fact, this operator is surjective by the Tietze extension theorem – Proposition A.29.
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(fn)n. For any K ⊂ X compact, we see from the definitions that (fn|K) is boun-
ded and equicontinuous and thus (cf. Arzela-Ascoli for compact metric spaces) has
Cauchy-subsequence3.

We now choose for any m ∈ N a compact set Km so that every fn is bounded by 1
m

on
the complement ofKm (in absolute value of course). By replacingK2 byK1∪K2,K3

byK1∪K2∪K3 and so forth (which preserves the defining property of these compact
sets) we may assume that K1 ⊂ K2 ⊂ K3 ⊂ . . . holds. Using a diagonal argument
(as in Exercise 5) we find a subsequence (fnj

)j of (fn)n with the property that fnj
|Km

is a Cauchy-sequence for any m.

We claim that (fnj
)j is a Cauchy-sequence in C0(X). Let ε > 0 and choose m ∈ N

with 1
m
< ε. Then for any j1, j2 and x 6∈ Km

|fnj1
(x)− fnj2

(x)| ≤ |fnj1
(x)|+ |fnj2

(x)| < 2ε.

Combining this with the fact that the fnj
’s are a Cauchy-sequence when restricted to

Km we obtain that ‖fnj1
(x) − fnj2

‖∞ < 2ε for all j1, j2 large enough and thus the
theorem.

3In fact, if X is σ-compact one can find a subsequence (fnj
)j of (fn)n with the property that fnj

|K is
a Cauchy-sequence for any K ⊂ X compact.
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