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Solutions for exercise sheet 4

1. Let (vk)k and (wk)k be sequences in V with vk → v and wk → w as k →∞. We
need to show that 〈vk, wk〉 → 〈v, w〉 as k →∞. For this, note that∣∣ 〈vk, wk〉 − 〈v, w〉 ∣∣ ≤ ∣∣ 〈vk, wk〉 − 〈v, wk〉 ∣∣+ ∣∣ 〈v, wk〉 − 〈v, w〉 ∣∣

≤
∣∣ 〈vk − v, wk〉 ∣∣+ ∣∣ 〈v, wk − w〉 ∣∣

≤ ‖vk − v‖‖wk‖+ ‖v‖‖wk − w‖.

Since ‖wk‖ → ‖w‖ as k →∞ we have ‖wk‖ ≤ ‖w‖ + 1 for all large enough k
and in particular∣∣ 〈vk, wk〉 − 〈v, w〉 ∣∣ ≤ ‖vk − v‖(‖w‖+ 1) + ‖v‖‖wk − w‖.

Let ε > 0. If K ∈ N is such that ‖vk − v‖, ‖wk −w‖ < ε for all k ≥ K and such
that ‖wk‖ ≤ ‖w‖+ 1, we have∣∣ 〈vk, wk〉 − 〈v, w〉 ∣∣ ≤ (‖w‖+ 1 + ‖v‖)ε

concluding the proof.

2. a) Let us define V = R2 with the norm ‖·‖ = ‖·‖∞. Furthermore, consider the
square K = [−1, 1] × [1, 2] as well as the point v0 = 0. The closed ball Br

of radius r around 0 is the square [−r, r]2 which intersects K only if r ≥ 1
and otherwise has positive distance from it. If r = 1, K ∩ Br = [−1, 1] × {1}
so the distance from K to v0 = 0 is 1 and is exactly achieved by all points in
[−1, 1]× {1}.

b) We already had this, see Exercise 3, Sheet 2.

3. a) For v, w ∈ V we expand

‖v + w‖2 = 〈v + w, v + w〉 = 〈v + w, v〉+ 〈v + w,w〉
= 〈v, v〉+ 〈w, v〉+ 〈v, w〉+ 〈w,w〉 = ‖v‖2 + 2 〈v, w〉+ ‖w‖2

by properties of the scalar product and similarly

‖v − w‖2 = ‖v‖2 − 2 〈v, w〉+ ‖w‖2.
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Therefore,

‖v + w‖2 − ‖v − w‖2 = 4 〈v, w〉

which proves the claim.

b) As in a) one shows that for k ∈ {0, 1, 2, 3} and v, w ∈ V

‖v + ikw‖2 = 〈v, v〉+
〈
ikw, v

〉
+
〈
v, ikw

〉
+
〈
ikw, ikw

〉
= ‖v‖2 + ik 〈w, v〉+ i−k 〈v, w〉+ iki−k 〈w,w〉
= ‖v‖2 + ik 〈w, v〉+ i−k 〈v, w〉+ ‖w‖2.

Therefore,

3∑
k=0

ik‖v + ikw‖2 =
3∑

k=0

ik‖v‖2 +
3∑

k=0

i2k 〈w, v〉+
3∑

k=0

〈w, v〉+
3∑

k=0

ik‖w‖2.

Now notice that the sum
∑3

k=0 i
k is the sum over the points 1, i,−1,−i hence

zero. Also,
∑3

k=0 i
2k = 1− 1 + 1− 1 = 0 and so

3∑
k=0

ik‖v + ikw‖2 =
3∑

k=0

〈w, v〉 = 4 〈w, v〉

as desired.

c) Motivated by a) we define for v, w ∈ V

〈v, w〉 = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
where the second equality is the parallelogram identity and verify all the proper-
ties required of an inner product (see Definition 3.1). Certainly, strict positivity
and symmetry follow directly from the definition of the inner product. It thus
remains to prove linearity. Let v1, v2, w ∈ V and compute

〈v1, w〉+ 〈v2, w〉 = 1
4
(‖v1 + w‖2 − ‖v1 − w‖2) + 1

4
(‖v2 + w‖2 − ‖v2 − w‖2)

= 1
4
(‖v1 + w‖2 + ‖v2 + w‖2)− 1

4
(‖v1 − w‖2 + ‖v2 − w‖2)

= 1
8

(
‖v1 + v2 + 2w‖2 + ‖(v1 + w)− (v2 + w)‖2

)
− 1

8

(
‖v1 + v2 − 2w‖2 + ‖(v1 − w)− (v2 − w)‖2

)
= 1

8

(
‖v1 + v2 + 2w‖2 + ‖v1 − v2‖2

)
− 1

8

(
‖v1 + v2 − 2w‖2 + ‖v1 − v2‖2

)
= 1

8

(
‖v1 + v2 + 2w‖2 − ‖v1 + v2 − 2w‖2

)
= 1

2
〈v1 + v2, 2w〉 .
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We refer to this as equation (*). Applying (*) to v2 = 0 we obtain in particular

〈v1, w〉 = 1
2
〈v1, 2w〉 . (1)

We now turn to proving linearity by first showing it for rational multiples. Let
v, w ∈ V . Let n ∈ N Applying (*) to v1 = (n − 1)v and v2 = v and (1) to
v1 = nv gives

〈(n− 1)v, w〉+ 〈v, w〉 = 1
2
〈nv, 2w〉 = 〈nv, w〉 .

From this we conclude by induction that

n 〈v, w〉 = 〈nv, w〉 .

This can generalized to n ∈ Z by noting that 〈−v, w〉 = −〈v, w〉 follows from
(*) applied to v1 = v and v2 = −v. Replacing v by 1

n
v we obtain

〈
1
n
v, w

〉
=

1
n
〈v, w〉 and the combination of both statements yield for any r ∈ Q

〈rv, w〉 = r 〈v, w〉 .

Given α ∈ R arbitrary we let rn be a sequence of rational numbers converging to
α.

By the above we only need to show that 〈rnv, w〉 → 〈αv, w〉 as n→∞. For this,
we apply (*) to v1 = αv and v2 = −rnv and obtain

〈αv, w〉 − 〈rnv, w〉 = 1
2
〈(α− rn)v, 2w〉 = 〈(α− rn)v, w〉 .

We claim that the latter goes to zero, which would follow immediately if Cauchy-
Schwarz-inequality was available (see Exercise 1). Since the proof of Cauchy-
Schwarz uses R-lineariy we instead apply the definition of the inner product,
from which the statement follows directly.

4. a) Stricty positivity follows from the fact that if ‖f‖ = ‖f‖Hp(D) = 0 then f ◦
γr = 0 for all r as a continuous function which vanishes almost everywhere,
vanishes everywhere. Homogeneity is direct. Applying Minkowski’s inequality
to the function f ◦ γr yields the claim.

b) For any f ∈ V and z0 ∈ D the Cauchy-integration formula implies that

f(z0) =
1
2πi

∫
γr

f(z)
z−z0 dz (2)

holds whenever z0 ∈ Br(0) = Br.
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To show continuity of the evaluation maps, we use (2) to estimate for z0 ∈ D and
r < 1 with z0 ∈ Br

|f(z0)| ≤ 1
2π

∫ 2π

0

|f(γr(t))|
|γr(t)−z0| |γ

′
r(t)| dt = r

2π d(∂Br,z0)

∫ 2π

0

|f(γr(t))| dt

where d(∂Br, z0) denotes the distance of z0 to the circle of radius r around zero
(which is positive if r is close to one). Using the Hölder inequality (inserting a 1)∫ 2π

0

|f(γr(t))| dt ≤
(∫ 2π

0

|f(γr(t))|p dt
) 1

p

·
(∫ 2π

0

1 dt

) 1
q

≤ (2π)
1
q ‖f‖

where q is the Hölder conjugate to p and where we write ‖f‖ for the Hardy-norm
to simplify notation. We have thus shown that

|f(z0)| ≤ r(2π)
1
q

2π d(∂Br,z0)
‖f‖ ≤ (2π)

1
q

2π d(∂Br,z0)
‖f‖

and in particular that the evaluation maps are continuous.

If O ⊂ D satisfies O ⊂ D, considering the continuous map z ∈ O 7→ d(z, ∂B1)
shows that there is a radius 1 > r > 0 such that O ⊂ Br. Thus, using this radius
r above yields

‖f |O‖∞ ≤
(2π)

1
q

2π d(∂Br,z0)
‖f‖

concluding the second part of b).

c) By Proposition 2.59 we may extend any map f ∈ V 7→ f |O as above to all of
Hp(D). We shall denote this by

ResO : Hp(D)→ C(O).

If f ∈ Hp(D) there is a sequence (fn)n of functions in V with fn → f in
Hp(D). In particular, boundedness implies ResO(fn) → ResO(f). The Cauchy
integration formula shows that a uniform limit of holomorphic functions such as
this one is also holomorphic.

This shows that any f ∈ Hp(D) yields a holomorphic function on D, namely
the function gf : D → C defined by gf (z) = ResO(f)(z) whenever z ∈ O and
O ⊂ D. Here, one verifies that this is indeed well-defined. This follows from the
fact that if O1 ⊂ O2 the restriction functions satisfy

ResO2
(f)|O1 = ResO1

(f). (3)

Indeed, both sides define bounded operators Hp(D) → C(O1) and are equal on
V so the statement is a consequence of uniqueness in Proposition 2.59.
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Notice that we do not know whether or not the function gf extends continuously
to the boundary. However, if we let Dr denote the open disc of radius r and Vr
the vector space of continuous functions on Dr which are holomorphic in the
interior, we obtain a continuous map

Restot : f ∈ Hp(D) 7→ (gf |Dr
)r = (ResDr

(f))r ∈
∏

r∈(0,1)

Vr.

The image of Restot lies in the subspace

W =

{
(fr)r ∈

∏
r∈(0,1)

Vr : fr2 |Dr1
= fr1 for all 0 < r1 < r2 < 1

}
by Equation 3. Since the discussion from a) and b) also apply to Vr we obtain a
norm ‖·‖Hp(Dr) on Vr and may denote by Hp(Dr) the completion of Vr. We also
notice that W can be identified with the space of holomorphic functions on D.

It remains to show that Restot : Hp(D)→ W is injective. For this, we would like
to prove that

‖f‖ = sup
r∈(0,1)

‖ResDr
(f)‖Hp(Dr) (4)

for all f ∈ V and that this formula extends to the completion. So if f ∈ V is a
function with Restot(f) = 0 we must have ‖f‖ = 0 and we would be done.

Note first that if f ∈ V then by definition of the norm and the restriction map

‖ResDr
(f)‖pHp(Dr)

= sup
s∈(0,r)

∫ 2π

0

|f(γs(t))|p dt

holds for any r ∈ (0, 1) so that (4) is satisfied. In particular, ‖ResDr
(f)‖Hp(Dr) ≤

‖f‖Hp(D). If f ∈ Hp(D) is arbitrary, we need to refine this argument. Note that
the induced map

ResDr
: Hp(D)→ Vr ⊂ Hp(Dr)

has norm at most 1 when restricted to V by the above and thus (see Proposition
2.59) it has norm at most 1. Thus, ‖ResDr

(f)‖Hp(Dr) ≤ ‖f‖Hp(D). To prove (4),
we choose g ∈ V with ‖f−g‖Hp(D) < ε and r ∈ (0, 1) with ‖ResDr

(g)‖Hp(Dr) >
‖g‖Hp(D) − ε. Then

‖ResDr
(f)‖Hp(Dr) ≥ ‖ResDr

(g)‖Hp(Dr) − ‖ResDr
(f − g)‖Hp(Dr)

≥ ‖g‖Hp(D) − ε− ‖f − g‖Hp(D)

≥ ‖f‖Hp(D) − 3ε

which proves (4).
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5. a) We first prove the statement in the hint. For this, we consider for any fixed a > 0
the function

ψa : b ∈ [0,∞) 7→ (a2 + b2)
p
2 − bp ∈ [0,∞)

with ψa(0) = ap. The derivative satisfies

ψ′a(b) =
p

2
(a2 + b2)

p
2
−12b− pbp−1

and is thus non-negative whenever (a2+b2)
p
2
−1 ≥ bp−2. Since the latter is always

true, ψa is monotonely increasing. This proves the claim in the hint.

We now turn to the proof of Clarkson’s inequality and let f, g ∈ Lpµ(X). For µ-

almost every x we may apply the claim to a = |f(x)|+|g(x)|
2

and b =

∣∣|f(x)|−|g(x)|∣∣
2

(here strictly speaking one should choose a representative of f, g) to get(
|f(x)|+ |g(x)|

2

)p
+

(
|f(x)| − |g(x)|

2

)p
≤
(
1
4
2|f(x)|2 + 1

4
2|g(x)|2

) p
2

=
(
1
2
|f(x)|2 + 1

2
|g(x)|2

) p
2

≤ 1
2
|f(x)|p + 1

2
|g(x)|p

by convexity of t 7→ t
p
2 . Integrating over this yields the statement in a).

b) The statement in a) shows that for any f, g ∈ Lpµ(X) in the closed unit ball∥∥∥∥f + g

2

∥∥∥∥p ≤ 1
2
(‖f‖p + ‖g‖p)−

∥∥∥∥f − g2

∥∥∥∥p ≤ 1− 2−p‖f − g‖p

so uniform convexity is satisfied with the function

η(x) = 1−
(
1− 2−pxp)

1
p

as one readily checks.

c) Assume that there are two disjoint measurable sets A,B ∈ B with positive finite
measure. Note that this is quite a weak assumption!

We denote by χA and χB the respective characteristic functions.

To see that L1 = L1
µ(X) is not uniformly continuous, one may consider

f = 1
µ(A)

, g = 1
µ(B)

χB

which are functions of norm one with

1
2
‖f + g‖L1 = 1

2
(‖f‖L1 + ‖g‖L1) = 1

6



as A,B are disjoint.

To see that L∞ = L∞mu(X) is not uniformly convex consider the L∞-norm one
functions

f = χA + χB, g = χA − χB

for which

f + g

2
= χA

also has norm one.

6. We verify first that the inner product is indeed well-defined. For x, y ∈ `1(Z) we have

‖x ∗ y‖1 =
∑
k∈Z

∣∣∣∑
j∈Z

xjyk−j

∣∣∣ ≤∑
k∈Z

∑
j∈Z

|xj||yk−j|.

By (absolute) convergence of the series
∑

n |xn| and
∑

n |yn| we may write (this is a
standard fact from analysis) the latter as∑

j∈Z

|xj|
(∑
k∈Z

|yk−j|
)
=
∑
j∈Z

|xj|
(∑
k∈Z

|yk|
)
= ‖x‖1‖y‖1

We have thus also shown the required inequality for Banach algebras. Note that one
should also check the bilinearity of the operation, which is however straight-forward;
we thus omit it here.

It remains to check that `1(Z) is indeed unital and commutative. Let us first show that
it is indeed commutative. For x, y ∈ `1(Z) and k ∈ Z we have

(x ∗ y)k =
∑
j∈Z

xjyk−j =
j′=k−j

∑
j′∈Z

xk−j′yj′ = (y ∗ x)k

where the substitution is justified by absolute convergence.

Define δ ∈ `1(Z) through

δn =

{
1 if n = 0
0 else .

Then one computes for any x ∈ `1(Z) and k ∈ Z

(x ∗ δ)k =
∑
j∈Z

xjδk−j = xk

so x ∗ δ = x and δ ∗ x = x follows from commutativity.
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