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1. Recall that the Frechet-Riesz theorem states that
H—=H, - ¢=(,x)

defines a semi-linear isomorphism between H and H*. We denote by ¢ — x, the
semilinear inverse and define for ¢, ¢’ € H*

(D, 0 )gpe = (g0, 29) -

One checks that this defines an inner product on H* which induces the operator norm.
Since = +— ¢, is isometric, H* is also a Banach space with respect to the operator
norm.

It remains to exhibit the natural isometric isomorphism between H and H**. For x €
‘H we can define

Yy p € H — ¢(x)
to obtain a linear map
UV:H—>H" x>,

We need to show that this is an isometric isomorphism. To see that it is isometric, let
x € H be non-zero (otherwise there is nothing to show) and note that

[Vallop = sup [¢z(¢)] = sup |¢(z)| < Sup1\|¢||||l’|\ = [||

lgll<1 lgll<1 loll<

as well as

[¥2lop =

6s(a)| = lle]l

In particular, W is injective. To see that it is surjective, we apply the first part of the
exercise and the Frechet-Riesz theorem (twice). So let¢) € H** and write 1) = (-, $),,.
for ¢ € H*. Further, write ¢ = ¢, for x € H. Overall, we have for ¢, € H*

¢(¢y> = <¢ya¢r>y* = <x7y>7-[ = Qby(x)

which shows surjectivity.



2. Denote by 7 : R® — T" the natural projection, which is continuous. We deduce that
m is Haar measure from the fact that the Lebesgue measure mg~ has this property
(this is usually shown in a course on measure theory). Notice that by definition for
any (Borel) measurable A C T"

m(A) = mg« (77 (A) N [0,1]") = mga (77 (A) N [0,1)") = mg~ (77(A) N (0,1)")

as the boundary of the hyper-cube [0, 1]" is a null set for the Lebesgue measure mpgx.

We first need to show that any compact set X C T" has finite measure. The set
K=n"YK)n[0,1]"

is closed and thus compact as a subset of the compact set [0, 1]”. Note that it has image
K. In particular,

(0,1

where y denotes the characteristic function.
Let O C T" be open; we claim that m(O) > 0. For this, notice that
m(0) = mg~ (7" 1(0) N [0,1]™) = mg~ (7 +(O) N (0,1)*) > 0
as 7 1(0) N (0,1)™ is open.
Finally, let A C T" be (Borel) measurable and let a € R™. Then
m(a+ A) = mgs((a +77(A)) N[0, 1]") = mpa (7~ (A) N ([0, 1]" — a))

by translation invariance of the Lebesgue measure. Notice that we can write 71 (A) =
|lpezn Ar where Ay = 7= (A)N([0,1)" + k). As Ay = Ay — k translation invariance
also implies

ma+A) =Y mp (AN ([0,1]" —a)) = Y mp(Ao N ([0,1]" — a — k))

As | |70 ([0,1)" —a — k) = R" this implies m(a + A) = mgn(Ay) = m(A) as
desired.

3. We prove first that W is closed. Since clearly, W is the kernel of the operator L,
it suffices to show that L is indeed bounded. For this, we use the Cauchy-Schwarz-
inequality to see that for any x € V (or actually ¢*(N))

5> < (Z 7%)

n n




4.

which proves boundedness.

Now if v € V is orthogonal to W, it must be orthogonal to w™ e W (for any n € N)

) (n) _ (n)

where w;™ = 0, wy"” = —n and w,"” = 0 otherwise. In other words,

0= (v,w™) =y — ny,

so that v,, = %vl for all n € N. However, as v € ¢.(N) = V there must be n € N with
v, = 0. This shows that v; = 0 and hence v = 0.

For the only remaining claim we assume that there exists v € V with L(z) = (z,v)
for all x € V. This vector v must, as the kernel of L is WV, be orthogonal to ¥ and so
v = 0. However, L is non-trivial (e.g. L(1,0,0,...) = 1) which is a contradiction.

a) Fix y € H and note that the map

0z 2y € H— B(x,y)

is linear and bounded, as

ex ()] = |B(,y)| = Bz, y)| < Mllz]ly]-

By the Frechet-Riesz theorem there exists a unique 7z € H* with B(z,y) =
(y, Tx) for all y € H or equivalently

B(z,y) = (Tz,y) (D
as required. This defines a map
T:H—H

which is uniquely characterized by the property in (1).
We claim that 7" is linear. If 1, 2o € ‘H then forany y € ‘H

<TI1 + Tx?ay> = <T.T1,y> + <T.T2,y> = B<x1’y) + B([E27y)
= B(xy + 22,y)

The vector T'zy + T'z5 thus satisfies the property required of 7'(x; + x2) and by
uniqueness 7'(x1 + x3) = Tx; + Txo. One proceeds similarly for homogeneity
and thus, 7' is linear.

To see that 7" is bounded, notice that for any x € ‘H
IT2|* = |{Tz,Tx) | = |B(z,Tz)| < M||z||||T]

so that || Tz|| < M||z|| as follows from division with ||Tz| (if Tx = O this is
also clear).



b) The coercivitiy assumption yields for any z € H
cllzl* < |B(z, )| = [(Tw,z) | < || Tz|||
together with Cauchy-Schwarz or equivalently

cllz| < ([T 2)

We use Equation (2) to show that 7' is bijective. Observe first that 7" has closed
image. In fact, by (2) if (T'xy); is a Cauchy-sequence, so is (), and hence the
image of 1" is complete and thus closed. Let y € H be orthogonal to the image
of T'. Then in particular,

0=[(Ty,y) | =By, y)| = clly|l”
and so y = 0. Corollary 3.17 on the orthogonal decomposition implies that 7" is
surjective. Injectivity follows directly from (2).
We have thus a linear map 7! : H — H. By (2) applied for x = T*(y) we
have

| Tyl <yl

which proves also the required bound on the operator norm.

5. For measurable v the statement ¢» € £ is equivalent to || € £2. Also, if g € L>
for all ¢ € L£? then the same holds for |¢|. This can be seen by considering the sign
function

sign(¢)(z) = {m% if (z) # 0

0 else

which is in £*°. Therefore, we may assume that 1) is a non-negative (real-valued)
function.

We claim that the linear map

\I/:g€L2»—>/1/Jgd,u€(C
X

is bounded (it is well-defined by assumption on /). Assume the contrary and find a
sequence g, € £ with | [ g, dp| > 3 and ||gx||2 = 1. Since

!/Xwgkdulé/Xw!gk\du



by non-negativity of 1) we may assume that g, > 0 as well for all k£ (by replacing with
|gk|)- Define

g= Z 27 gp
!

which is an element of £? (as ||gx|[ = 1). Plugging g into the definition of ¥ we
obtain by monotone convergence

k

3
_ —k
/)(wgd“‘zk ? /Xwg’“d”zzk %

which diverges and thus contradicts our assumption. Thus, ¥ is a bounded linear func-
tional.

By the Frechet-Riesz representation theorem there exists 4 € £2 with

U(g) = /X hg du

for all g € L?. In particular, [, (h —1)gdyu = 0 for all g € L*. Replacing g with
sign(h — 1)g we obtain

/ |h—lgdp =0
X

for all ¢ € L2 Using this for characteristic functions of measurable sets we obtain
that | — 9| = 0 almost everywhere. Thus, ¢ € L2

. For v € I we have Uv = v, hence SN U= % S°N v = v. By definition of a
projection F; is the identity on I. So the convergence has to hold for this subspace.

Let us define B := {Uw — w : w € H}. Notice that B C I+ as for any Uw — w € B
andv € [+

(Uw —w,v) = (Uw,v) — (w,v) = (w,Uv) — (w,v) = (w,v) — (w,v) =0.

For v = Uw — w € B we have
1 & 1 < 1
—ZU”U = —ZU"+1w— Urw = — (UM w — Uw)
Nn:l Nn:l N

as U™v = U™"w — U™w. Hence the norm of this expression can be bounded by
UM w—Uw]|| < +(|Jw||+]|w]|) which goes to 0 for N — oo. Since Uw—w € I+
its projection has to be 0, showing the claimed convergence on the subset B C I+,



We claim that B C I+ is dense. By Corollary 3.26 we may show that B+ = I for
which only one inclusion is still open. So assume v € B*. Then for all w € H we
have

0= (v,Uw—w) = (v,Uw) — (v,w) = (Uv,w) — (v,w) = (Uv — v,w)
and applying this to w = Uv — v yields Uv —v =01e.v € [.

Now if v € I+ is arbitrary, we may choose for ¢ > 0 some v' € B with ||[v — v'|| < e.
Then

]'NUn _ ]'NUn / ]'NUn/ 1JVU'n/
N; U—N; (v—v)—i—ﬁg V|| < e+ N; v

As e > 0 this proves the claim of the exercise for elements of /* and since any element
of H can be written as a sum of an element of / and an element of /-, we are done.



