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1. Recall that the Frechet-Riesz theorem states that

H → H∗, x 7→ φx = 〈·, x〉

defines a semi-linear isomorphism between H and H∗. We denote by φ 7→ xφ the
semilinear inverse and define for φ, φ′ ∈ H∗

〈φ, φ′〉H∗ = 〈xφ′ , xφ〉 .

One checks that this defines an inner product onH∗ which induces the operator norm.
Since x 7→ φx is isometric, H∗ is also a Banach space with respect to the operator
norm.

It remains to exhibit the natural isometric isomorphism between H and H∗∗. For x ∈
H we can define

ψx : φ ∈ H∗ 7→ φ(x)

to obtain a linear map

Ψ : H → H∗∗, x 7→ ψx

We need to show that this is an isometric isomorphism. To see that it is isometric, let
x ∈ H be non-zero (otherwise there is nothing to show) and note that

‖ψx‖op = sup
‖φ‖≤1

|ψx(φ)| = sup
‖φ‖≤1

|φ(x)| ≤ sup
‖φ‖≤1

‖φ‖‖x‖ = ‖x‖

as well as

‖ψx‖op ≥
∣∣∣ 1
‖x‖φx(x)

∣∣∣ = ‖x‖.

In particular, Ψ is injective. To see that it is surjective, we apply the first part of the
exercise and the Frechet-Riesz theorem (twice). So let ψ ∈ H∗∗ and write ψ = 〈·, φ〉H∗
for φ ∈ H∗. Further, write φ = φx for x ∈ H. Overall, we have for φy ∈ H∗

ψ(φy) = 〈φy, φx〉H∗ = 〈x, y〉H = φy(x)

which shows surjectivity.
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2. Denote by π : Rn → Tn the natural projection, which is continuous. We deduce that
m is Haar measure from the fact that the Lebesgue measure mRn has this property
(this is usually shown in a course on measure theory). Notice that by definition for
any (Borel) measurable A ⊂ Tn

m(A) = mRn(π−1(A) ∩ [0, 1]n) = mRn(π−1(A) ∩ [0, 1)n) = mRn(π−1(A) ∩ (0, 1)n)

as the boundary of the hyper-cube [0, 1]n is a null set for the Lebesgue measure mRn .

We first need to show that any compact set K ⊂ Tn has finite measure. The set

K̃ = π−1(K) ∩ [0, 1]n

is closed and thus compact as a subset of the compact set [0, 1]n. Note that it has image
K. In particular,

m(K) =

∫
[0,1]n

χK dmRn = mRn(K̃) <∞.

where χ denotes the characteristic function.

Let O ⊂ Tn be open; we claim that m(O) > 0. For this, notice that

m(O) = mRn(π−1(O) ∩ [0, 1]n) = mRn(π−1(O) ∩ (0, 1)n) > 0

as π−1(O) ∩ (0, 1)n is open.

Finally, let A ⊂ Tn be (Borel) measurable and let a ∈ Rn. Then

m(a+ A) = mRn((a+ π−1(A)) ∩ [0, 1]n) = mRn(π−1(A) ∩ ([0, 1]n − a))

by translation invariance of the Lebesgue measure. Notice that we can write π−1(A) =⊔
k∈Zn Ak where Ak = π−1(A)∩ ([0, 1)n + k). As A0 = Ak− k translation invariance

also implies

m(a+ A) =
∑
k∈Zn

mRn(Ak ∩ ([0, 1]n − a)) =
∑
k∈Zn

mRn(A0 ∩ ([0, 1]n − a− k))

As
⊔
k∈Zn([0, 1)n − a − k) = Rn this implies m(a + A) = mRn(A0) = m(A) as

desired.

3. We prove first that W is closed. Since clearly, W is the kernel of the operator L,
it suffices to show that L is indeed bounded. For this, we use the Cauchy-Schwarz-
inequality to see that for any x ∈ V (or actually `2(N))∣∣∣∣∣∑

n

xn
n

∣∣∣∣∣ ≤ ‖x‖2
(∑

n

1

n2

) 1
2
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which proves boundedness.

Now if v ∈ V is orthogonal to W , it must be orthogonal to w(n) ∈ W (for any n ∈ N)
where w(n)

1 = 0, w(n)
n = −n and w(n)

k = 0 otherwise. In other words,

0 =
〈
v, w(n)

〉
= y1 − nyn

so that vn = 1
n
v1 for all n ∈ N. However, as v ∈ cc(N) = V there must be n ∈ N with

vn = 0. This shows that v1 = 0 and hence v = 0.

For the only remaining claim we assume that there exists v ∈ V with L(x) = 〈x, v〉
for all x ∈ V . This vector v must, as the kernel of L is W , be orthogonal to W and so
v = 0. However, L is non-trivial (e.g. L(1, 0, 0, . . .) = 1) which is a contradiction.

4. a) Fix y ∈ H and note that the map

ϕx : y ∈ H 7→ B(x, y)

is linear and bounded, as

|ϕx(y)| = |B(x, y)| = |B(x, y)| ≤M‖x‖‖y‖.

By the Frechet-Riesz theorem there exists a unique Tx ∈ H∗ with B(x, y) =
〈y, Tx〉 for all y ∈ H or equivalently

B(x, y) = 〈Tx, y〉 (1)

as required. This defines a map

T : H → H

which is uniquely characterized by the property in (1).

We claim that T is linear. If x1, x2 ∈ H then for any y ∈ H

〈Tx1 + Tx2, y〉 = 〈Tx1, y〉+ 〈Tx2, y〉 = B(x1, y) +B(x2, y)

= B(x1 + x2, y)

The vector Tx1 + Tx2 thus satisfies the property required of T (x1 + x2) and by
uniqueness T (x1 + x2) = Tx1 + Tx2. One proceeds similarly for homogeneity
and thus, T is linear.

To see that T is bounded, notice that for any x ∈ H

‖Tx‖2 = | 〈Tx, Tx〉 | = |B(x, Tx)| ≤M‖x‖‖Tx‖

so that ‖Tx‖ ≤ M‖x‖ as follows from division with ‖Tx‖ (if Tx = 0 this is
also clear).
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b) The coercivitiy assumption yields for any x ∈ H

c‖x‖2 ≤ |B(x, x)| = | 〈Tx, x〉 | ≤ ‖Tx‖‖x‖

together with Cauchy-Schwarz or equivalently

c‖x‖ ≤ ‖Tx‖. (2)

We use Equation (2) to show that T is bijective. Observe first that T has closed
image. In fact, by (2) if (Txk)k is a Cauchy-sequence, so is (xk)k and hence the
image of T is complete and thus closed. Let y ∈ H be orthogonal to the image
of T . Then in particular,

0 = | 〈Ty, y〉 | = |B(y, y)| ≥ c‖y‖2

and so y = 0. Corollary 3.17 on the orthogonal decomposition implies that T is
surjective. Injectivity follows directly from (2).

We have thus a linear map T−1 : H → H. By (2) applied for x = T−1(y) we
have

c‖T−1y‖ ≤ ‖y‖

which proves also the required bound on the operator norm.

5. For measurable ψ the statement ψ ∈ L2 is equivalent to |ψ| ∈ L2. Also, if ψg ∈ L2

for all g ∈ L2 then the same holds for |ψ|. This can be seen by considering the sign
function

sign(ψ)(x) =

{
ψ(x)
|ψ(x)| if ψ(x) 6= 0

0 else

which is in L∞. Therefore, we may assume that ψ is a non-negative (real-valued)
function.

We claim that the linear map

Ψ : g ∈ L2 7→
∫
X

ψg dµ ∈ C

is bounded (it is well-defined by assumption on ψ). Assume the contrary and find a
sequence gk ∈ L2 with |

∫
X
ψgk dµ| > 3k and ‖gk‖2 = 1. Since

|
∫
X

ψgk dµ| ≤
∫
X

ψ|gk| dµ
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by non-negativity of ψ we may assume that gk ≥ 0 as well for all k (by replacing with
|gk|). Define

g =
∑
k

2−kgk

which is an element of L2 (as ‖gk‖2 = 1). Plugging g into the definition of Ψ we
obtain by monotone convergence∫

X

ψg dµ =
∑
k

2−k
∫
X

ψgk dµ ≥
∑
k

3k

2k

which diverges and thus contradicts our assumption. Thus, Ψ is a bounded linear func-
tional.

By the Frechet-Riesz representation theorem there exists h ∈ L2 with

Ψ(g) =

∫
X

hg dµ

for all g ∈ L2. In particular,
∫
X

(h − ψ)g dµ = 0 for all g ∈ L2. Replacing g with
sign(h− ψ)g we obtain ∫

X

|h− ψ|g dµ = 0

for all g ∈ L2. Using this for characteristic functions of measurable sets we obtain
that |h− ψ| = 0 almost everywhere. Thus, ψ ∈ L2.

6. For v ∈ I we have Uv = v, hence 1
N

∑N
n=1 U

nv = 1
N

∑N
n=1 v = v. By definition of a

projection PI is the identity on I. So the convergence has to hold for this subspace.

Let us define B := {Uw − w : w ∈ H}. Notice that B ⊂ I⊥ as for any Uw − w ∈ B
and v ∈ I⊥

〈Uw − w, v〉 = 〈Uw, v〉 − 〈w, v〉 = 〈w,Uv〉 − 〈w, v〉 = 〈w, v〉 − 〈w, v〉 = 0.

For v = Uw − w ∈ B we have

1

N

N∑
n=1

Unv =
1

N

N∑
n=1

Un+1w − Unw =
1

N
(UN+1w − Uw)

as Unv = Un+1w − Unw. Hence the norm of this expression can be bounded by
1
N
‖UN+1w−Uw‖ ≤ 1

N
(‖w‖+‖w‖) which goes to 0 forN →∞. Since Uw−w ∈ I⊥

its projection has to be 0, showing the claimed convergence on the subset B ⊂ I⊥.

5



We claim that B ⊂ I⊥ is dense. By Corollary 3.26 we may show that B⊥ = I for
which only one inclusion is still open. So assume v ∈ B⊥. Then for all w ∈ H we
have

0 = 〈v, Uw − w〉 = 〈v, Uw〉 − 〈v, w〉 = 〈Uv,w〉 − 〈v, w〉 = 〈Uv − v, w〉

and applying this to w = Uv − v yields Uv − v = 0 i.e. v ∈ I .

Now if v ∈ I⊥ is arbitrary, we may choose for ε > 0 some v′ ∈ B with ‖v − v′‖ < ε.
Then∥∥∥∥∥ 1

N

N∑
n=1

Unv

∥∥∥∥∥ =

∥∥∥∥∥ 1

N

N∑
n=1

Un(v − v′)

∥∥∥∥∥+

∥∥∥∥∥ 1

N

N∑
n=1

Unv′

∥∥∥∥∥ < ε+

∥∥∥∥∥ 1

N

N∑
n=1

Unv′

∥∥∥∥∥
and letting N →∞ we obtain

lim sup
N→∞

∥∥∥∥∥ 1

N

N∑
n=1

Unv

∥∥∥∥∥ ≤ ε.

As ε > 0 this proves the claim of the exercise for elements of I⊥ and since any element
ofH can be written as a sum of an element of I and an element of I⊥, we are done.
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