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1.

2.

Solutions for exercise sheet 6

Write f = ), anX» Where the functions x,, are the characters of the 1-torus and are
given by x,,(z) = ™ forn € Z and z € T. We know that ag = O as [, f(t) dt = 0.
Then by Theorem 3.57 we have [ = )" . (2min)a,x, and so

IF1Z2 =D laal®s 17152 = D (2m)°nPanf.

neL nez

Since ay = 0, the inequality |a,|* < n?|a,|? holds for all n € Z and hence

IFIIZ2 < @z D 2m)" 0% |anl* = Gz lFII2:
@n) @n)

neL
as desired.
Now assume that || f||2, = _(2;)2 | f'||3.. This is equivalent to |a,|* = n?|a,|* for all
n € Z and is true for n = 1 and n = —1. For |n| > 1 it implies a,, = 0 and thus

concludes the exercise.

a) Note first that you can view any character ys on GG as a character on G x H by
extending it trivial i.e. by defining

ext

X&' (9, h) = xalg)
forall (g, h) € G x H. The same holds for H. We claim that the homomorphism

GxH—GxH, (X, xu) = x&'XE

ext ., ext 3

is an isomorphism. The map is injective: if x&" x4" is the trivial character, then

xa(g)xu(h) = x&* (g, h)xg" (g, h) =1

for all (g,h) € G x H. Applying this for h = ey yields that x is trivial and
applying it for g = e yields that y g is trivial.

The map surjective: If x is a character on G x H notice that
x(g.h) = x(g,en)x(ec, h)

exactly write y as a product of two characters, one on GG and one H, as required.



b) As in the hint define for k = k + NZ € Z/NZ
Xz :Z/NZ — S', x4+ N7 s e>™ek/N,

Notice that the division by N is what makes y; well-defined. One checks that x
is a character of Z/NZ. We claim that the map

k€ Z/NZ > x; € ZJNZ

is an isomorphism. It is injective: if y; is trivial then in particular e*™*/V = 1

and hence % cZie k=0.

To prove surjectivity, let' y be an arbitrary character and define ¢ = x(1). Then
¢ is an N-th root of unity as

and may hence be written as ¢ = e*™*/~ for k € {0,..., N — 1}. For any
T € Z/NZ we then have

X(@) = (1) = ekl
SO X = X-

¢) By the classification of finite abelian groups, G may be written as a product of
groups (1, . .., G;, as in (b). By (a)

@’Eé\lx...xé:n%’Glx...xGm

2

G

where in the second step we used (b).

3. Define
G={(2), €T : 2,1, = 29, + 24, forall y;,7, € T'}.

which is (as it is defined by equations) a closed subgroup of T' and hence a compact
abelian group. Note that checking that T' is a metrizable topological group can be
done as in the solution to 4a). The group G naturally identifies with the group of
characters of [' when I' is equipped with the discrete topology.

It remains to find all characters of G. For vy € I' the map

Yoo ¢ (24)y € G = ™0

! Alternatively, one can show that the characters X7 separate points.



4.

defines a character of G. The character ., is trivial if z,, = 0 for all (2,), and thus
Yo = 0 as otherwise this would contradict the theorem on completeness of characters
(because G identifies with the group of characters of I'). In other words, we have
obtain a map

Yo €' — Xvo € CAJ
which is in fact an injective homomorphism by definition of G.

It remains to show that any character x on G can be written as xy = Y., for some
. . -1 Sl . . . .
Yo € I'. By continuity of x, x ™" (By,,,(1)) is open and contains the identity, so we

may choose an open set U of the form [ U, N G with x(U) C B?;lo(l) where all
but finitely many U, are equal to T. We list the exceptions as U,,,,...,U,,. Then U
contains

H={(z),€G:2y,=... =2, =0}

which is a closed subgroup of GG. By definition of U, the character x maps H to
Bf}lo(l). But then x|y must be trivial as otherwise any z = (z,), € H with x(z) # 1

can be multiplied by n € Z so that x(nz) = x(z)" lies outside of Blg;lo(l).

The above shows that y can be viewed as a character on the group G/ H which we now
interpret as a subgroup of T<. In fact, we have an injective continuous homomorphism

®:G/H 3 (29)y + Hw (20y,...,2,,) €T

which induces therefore an isomorphism (and a homeomorphism) with the image G’.
Thus, y yields a character on G'.

Let us briefly describe the characters on G’ and note that any character y,, on T¢
for n € Z% yields a character on G’. We claim that any character on G’ is of this
form. Indeed, consider the algebra A of finite linear combinations of the restrictions
Xnl|c- Since the characters y,, separate points, so does .4 and hence as in the proof of
Theorem 3.47 A is dense in L?(G’). Any character on G’ not of the form x,,|¢» would
need to be orthogonal to A and hence cannot exist.

We conclude that y = x,, o ® for some n € Z?. Therefore,

27i(n12y; +. A ng2y,) 27z,

X((21),) = e =€

where 79 = n171 + . .. + ng7yq4. This concludes the exercise.

a) By the already given explanations we only need to prove that the topology is
metrizable and that addition is continuous.



b)

The former follows directly from Exercise 1b), Sheet 0 where we proved that
a countable product of metrizable spaces is metrizable. So the topology on the
space X = [][, Z/p™Z is metrizable and hence the same holds for the induced
topology on Z,. We remark that the standard metric on Z, is given by

— inf{k|ak#by }+1 if b
p ifa #
dy(a,b) = {0 else

for a = (am)m and b = (by,)y, in Z,. One of the nice features of this metric is
that d,(a,b) = d,(a — b,0).

To prove that addition is continuous, it suffices to prove that the addition map
X x X — X is continuous. Let U be an open neighborhood of a € X. Since the
topology on X is the product topology and each of the factors in X is discrete,
we may assume that U is given by

U={x€e X :x,=a,forallme F}

where F' C N is a finite set. The preimage of U under the addition map is the
set of points (z,y) with z,, = —y,, — a,, forallm € F. Let (z,y) be any such
point. Letting U; be the set of points 2’ in X with 2/, = z,, and defining U,
analogously we obtain that the image of U; x U is in U as desired.

Let m be a Haar measure on Z,. By compactness we may assume that m(Z,) = 1
holds. We would first like to compute that Haar measure of any preimage of a
points under 7. Notice that

Z,= || m'({=). (1)

TEL/PFZ

For simplicity (and since it is customary) let us define p*Z, as the preimage of
zero under 7. If 2/ is any point in 7}, ' ({x}) for x € Z/p*Z then we have

T ({a}) = 2"+ m({0)) = 2 + p'L,.
Left invariance of the Haar measure thus shows that
m(m;' ({2})) = m(p*Z,)
in this case. It is however easy to see that the projection maps are surjective. For
instance, by viewing Z as a subset of Z,, via the map 2’ — (..., 2/, 2/, 2).
Summing this up, if we take the Haar measure in (1) we obtain

L=m(Z,) = Y m(m'({z}) = p*m(p'L,).

T€EL/P*Z



Therefore, any preimage of a point under 7, has measure p~*.

We claim that this property characterizes the measure uniquely. First of all, notice
that any open set O C Z, may be written as a countable disjoint union of sets
of the form z + p*Z,. By definition of the product topology it is certainly true
that O may be written as a union of finite intersections of such sets. If there is
a € (x+p"Z,) N (y+p'Z,) then for k > ¢ then 7,,,(a — ) = a,, — T, is zero for
all m < k. Applying this to y we obtain y,,, = a,, for m < ¢ as well so y,,, = x,,,
for m < (. Thus, (y + p‘Z,) C (z + p*Z,) and O may be written in the desired
fashion. The union is countable as Z, is compact. Therefore, the measure of any
open set is determined by m(p*Z,) = p~* for all k € Z.

We now somewhat refine this argument. Note that the characteristic function of
any set of the form z + p*Z, is continuous by (1). Let A be the set of finite
linear combinations of such characteristic functions. By a previous verification
A is an algebra and is thus dense in C'(Z,,). Density of C(Z,) in L*(Z,) as well
as ||']l1 < |||l implies that A C L'(Z,) is dense. Therefore, the integral of any
integrable function on Z, is determined by the integrals of functions in A and
hence by the equality m(p*Z,) = p~* for all k € Z.

¢) For any character x; on Z/p"Z we can define a character on Z, by xy o 7. Note
that characters of this form separate points: if v # y € Z, there is a k with x;, #
yx. The characters of Z /p*7Z separate points so there is x; with xx(21) # Y& (yx)-
In other words, x = x}, o 7, satisfies x(z) # x(y) as desired.

5. To simplify notation, we let x,,, denote the character of the torus associated to m € Z.

a) First, assume that the sequence is equidistributing. Then for any m € Z

S ) / Yont)

as n — oo. By orthogonality of characters, the integral is zero whenever Y., is
non-trivial i.e. m # 0.

3=

We first prove the converse implication for functions in C(T). For this, observe
that if f is a (finite) trigonometric sum of the form Z;n cmXm the convergence

=

n—

Tll f(flfk;) = Z/Cm% ZXm(l'k) — Co = /f(t) d
m k=0 T

0

£
I

holds. Otherwise, notice that the algebra A of (finite) trigonometric polynomials
is dense in C'(T) by the Theorem of Stone-Weierstrass. Therefore, if f € C(T)



is arbitrary and € > 0, let g € A with ||f — ¢||«« < € and choose N € N large
enough such that

—_

n—

< €.

1
n

o(x) — / g(t) dt

i

0
Then

n—1

LNT flag) — | f()dt
> s |
%Zf(:rk)—%z:g(xk)
k=0

dt—/f dt‘

<;Z|ka gtan)l+ e+ [ 17— g(o)]de < 3

< +

as desired. The claim is thus proven for functions in C'(T).

For the general case, let f € C([0, 1]) and assume without loss of generality that
f is real-valued (otherwise, use this for the real and the imaginary part) and that
f£(0) < f(1) (otherwise, consider — f). Let 6 > 0 be small and define a function
f+ € C(T) as follows: set f,(z) = f(z) when z > J. Otherwise, define x5 < &
as the smallest point in [0, 1] where the linear interpolation between (6, f(d)) and
(0, f(1)) intersects the graph of f. Using this, we set f, (z) = f(x) for z > x5
and otherwise let f, (z) be given by the linear interpolation. Then f < f, and
by choosing J small enough we can ensure that

/f+ t)ydt <e

for some e. Similarly, one construct f_ < f with f_(1) = f(0), f- < f and

/f t)dt < e

Applying the equidistribution statement to f,, f_ one obtains

n—oo

lim sup = Zf xr) [ }f+(t)dt§/1rf(t)dt+e
0,1

n—oo

lim inf + _(t)d dt —
imin n;fm)z Sz / f(t)dt — e

from which the equidistribution statement for f follows.



b)

a)

b)

Notice first that the leading digit of 2" is & if and only if
k-10™ <2" < (k+1)10™
for some m € Nj. Taking logarithms, this is equivalent to
log(k) +m < nlogy(2) < log(k+1)+m

or in other words log(k) < {na} < log(k + 1) where o = log;,(2).

Note that cv is irrational. Indeed, if log,((2) = ¥ for some rational number £ then
29 = 10P. Since 5” divides the right hand 51de it divides the left hand 31de SO
= 0 and thus ¢ = 0 which is impossible.

Let f be the characteristic function of the interval I, = [log,,(k),log,o(k + 1)).
Since f is not continuous we cannot apply a) directly, but need to approximate f
from above and below by continuous functions. Note that the class of functions
where this can be done is exactly the set of Riemann-integrable functions. Pick
for € > 0 continuous functions f., f_ : [0,1] — R with

<< [+ f+(@t) = [-(t)dt <e

[0,1]

Such functions can for instance be picked to be piecewise linear. The desired
statement for f then follows as in a).

We should first explain what we mean by a C*-function on T¢. We identify any
function f : T — C with a Z%-periodic function R? — C also denoted by f.
A function f : T¢ — C is C* if its counterpart f : R? — Cis C*. So we
may naturally view C*(T,;) C C¥(R?) where the latter is a Banach space by the
referenced example. The norm on C(R?) has the property that is describe also
in the exercise.

It remains to show that C*(T,;) C CF(R?) is closed. For this, let f; — f whe-
re the functions f, € CF(RY) are Z?-periodic and f € CF(R?). Note that pe-
riodicity of the functions f; implies periodicity of the all of their derivatives.
We need to show that f is Z?-periodic. Clearly, we have pointwise convergence
fe(z) — f(z) and so for any n € Z? and z € R? taking limits in the equality
fr(x) = fr(z + n) implies the desired statement.

Let f € C>(T?) and write



Then we can apply Theorem 3.57 to any derivative J, f of f to obtain that

10aflloo < D lan(@af)l = D 2m)IM nlan(f)] < oo

nel nez

%d

where n® = ni*---n3*. Applying this to all « of the form n% . with

Ui+ ...+ 1y =1 we obtaln by summing using the multinomial theorem

Y lnlllan(f)] < oo.

ne”

In particular, >, (1 + ||n||3%)|an(f)| < oo and thus (1 + [|n]|3%)|a.(f)| is a
bounded sequence. This proves the first direction.

Now let f : T? — C be square-integrable with the property that

1
|an(f)] <o
L+ [Infl3

for all ¢ € N. We first claim that

> @m)ll |l (f)] < oo )

nezZd
for any multiindex «. Surely, for n € Z? fixed and j € {1,...,d} we have using
the binomial theorem

aj aj aj . Qi
ot < (a2 < (1l =S () Il
k=0

<Z( )1+|| 15) = 2% (1 + [|m5™).

Using this same technique, the inequality
1+28 <1+ <142k (3)
follows for z > 0. Thus, by taking products

] <o [T+ InI5™) <a (1+ o)1) < 1+ [|n]f3*=.
J

Let ¢ € N be arbitrary (to be determined later) then applying our assumption

2[leflocd

Z(gﬂ)llalllma”an(f” <, Z LA nlle ™

20
nezd nezd 1+ HnH2



and choosing ¢ = kl||«/||..d we obtain by (3)

S et ()] < 3 I
2m) i n*|la,, <,
2l|lal|cod
nezd n€zZd (1 + H H e )k
et 1+H”H H Il )k 1
1
< g .
2||aflocd(k—1
=, 1+ ” ” [l )

For k large enough, this sum is convergent (see Equation (3.22) for a more precise
statement). This proves the claim in (2).

This implies that the smooth function

In= Z an(f)Xn

nEZd:nfleo <N

form a Cauchy-sequence in C*(T%) (where k is arbitrary). Indeed, for N > M
and a multiindex o we have

10a(fy = fillle < D @0)Y IR jan(f)] =0

nEZ:|Infloo>M

as M — oo by (2). Thus, by a) the sequence (fxy)y is convergent. Since k
is arbitrary, the limit must be a smooth function f € C°(T9). Since uniform
convergence implies LQ—convqrgence, the functions fy also converge to f in L2,
but this must imply that f = f as claimed.

By b) it suffices to show that

1

|an ()| <o ——m
L+ [l

for all ¢ € N. In fact, since the partial derivatives (‘9}“ f exist and are continuous,
the partial integration in Section 3.4.3 still applies and we have

an (0] f) = (27ing)*an(f).
Therefore, since 05 f € L*(T?)
D lan(@F NP = 2m)* nyFan(F)F < oo
nez nez
Summing over ;7 we obtain

> lnliFan (AP

ne’



By adding one and using the fact that any sequence with convergent series must
be bounded we deduce for even k

1

1 < i
V14 ||n[[ZF T 1+ 0|5

lacf)] <

as desired.

10



