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1. Write f =
∑

n∈Z anχn where the functions χn are the characters of the 1-torus and are
given by χn(x) = e2πinx for n ∈ Z and x ∈ T. We know that a0 = 0 as

∫
T f(t) dt = 0.

Then by Theorem 3.57 we have f ′ =
∑

n∈Z(2πin)anχn and so

‖f‖2
L2 =

∑
n∈Z

|an|2, ‖f ′‖2
L2 =

∑
n∈Z

(2π)2n2|an|2.

Since a0 = 0, the inequality |an|2 ≤ n2|an|2 holds for all n ∈ Z and hence

‖f‖2
L2 ≤ 1

(2π)2

∑
n∈Z

(2π)2n2|an|2 = 1
(2π)2
‖f ′‖2

L2

as desired.

Now assume that ‖f‖2
L2 = 1

(2π)2
‖f ′‖2

L2 . This is equivalent to |an|2 = n2|an|2 for all
n ∈ Z and is true for n = 1 and n = −1. For |n| > 1 it implies an = 0 and thus
concludes the exercise.

2. a) Note first that you can view any character χG on G as a character on G ×H by
extending it trivial i.e. by defining

χext
G (g, h) = χG(g)

for all (g, h) ∈ G×H . The same holds for H . We claim that the homomorphism

Ĝ× Ĥ → Ĝ×H, (χG, χH) 7→ χext
G χext

H

is an isomorphism. The map is injective: if χext
G χext

H is the trivial character, then

χG(g)χH(h) = χext
G (g, h)χext

H (g, h) = 1

for all (g, h) ∈ G × H . Applying this for h = eH yields that χG is trivial and
applying it for g = eG yields that χH is trivial.

The map surjective: If χ is a character on G×H notice that

χ(g, h) = χ(g, eH)χ(eG, h)

exactly write χ as a product of two characters, one on G and one H , as required.
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b) As in the hint define for k = k +NZ ∈ Z/NZ

χk : Z/NZ→ S1, x+NZ 7→ e2πixk/N .

Notice that the division by N is what makes χk well-defined. One checks that χk
is a character of Z/NZ. We claim that the map

k ∈ Z/NZ 7→ χk ∈ Ẑ/NZ

is an isomorphism. It is injective: if χk is trivial then in particular e2πik/N = 1
and hence k

N
∈ Z i.e. k = 0.

To prove surjectivity, let1 χ be an arbitrary character and define ξ = χ(1). Then
ξ is an N -th root of unity as

ξN = χN(1) = χN(N) = χN(0) = 1.

and may hence be written as ξ = e2πik/N for k ∈ {0, . . . , N − 1}. For any
x ∈ Z/NZ we then have

χ(x) = χx(1) = e2πikx/N

so χ = χk.

c) By the classification of finite abelian groups, G may be written as a product of
groups G1, . . . , Gm as in (b). By (a)

Ĝ ∼= Ĝ1 × . . .× Ĝm
∼= G1 × . . .×Gm

∼= G

where in the second step we used (b).

3. Define

G = {(zγ)γ ∈ TΓ : zγ1+γ2 = zγ1 + zγ2 for all γ1, γ2 ∈ Γ}.

which is (as it is defined by equations) a closed subgroup of TΓ and hence a compact
abelian group. Note that checking that TΓ is a metrizable topological group can be
done as in the solution to 4a). The group G naturally identifies with the group of
characters of Γ when Γ is equipped with the discrete topology.

It remains to find all characters of G. For γ0 ∈ Γ the map

χγ0 : (zγ)γ ∈ G 7→ e2πizγ0

1Alternatively, one can show that the characters χk separate points.
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defines a character of G. The character χγ0 is trivial if zγ0 = 0 for all (zγ)γ and thus
γ0 = 0 as otherwise this would contradict the theorem on completeness of characters
(because G identifies with the group of characters of Γ). In other words, we have
obtain a map

γ0 ∈ Γ 7→ χγ0 ∈ Ĝ

which is in fact an injective homomorphism by definition of G.

It remains to show that any character χ on G can be written as χ = χγ0 for some
γ0 ∈ Γ. By continuity of χ, χ−1(BS1

1/10(1)) is open and contains the identity, so we
may choose an open set U of the form

∏
γ Uγ ∩ G with χ(U) ⊂ BS1

1/10(1) where all
but finitely many Uγ are equal to T. We list the exceptions as Uγ1 , . . . , Uγd . Then U
contains

H = {(zγ)γ ∈ G : zγ1 = . . . = zγd = 0}

which is a closed subgroup of G. By definition of U , the character χ maps H to
BS1

1/10(1). But then χ|H must be trivial as otherwise any z = (zγ)γ ∈ H with χ(z) 6= 1

can be multiplied by n ∈ Z so that χ(nz) = χ(z)n lies outside of BS1
1/10(1).

The above shows that χ can be viewed as a character on the groupG/H which we now
interpret as a subgroup of Td. In fact, we have an injective continuous homomorphism

Φ : G/H 3 (zγ)γ +H 7→ (zγ1 , . . . , zγd) ∈ Td

which induces therefore an isomorphism (and a homeomorphism) with the image G′.
Thus, χ yields a character on G′.

Let us briefly describe the characters on G′ and note that any character χn on Td
for n ∈ Zd yields a character on G′. We claim that any character on G′ is of this
form. Indeed, consider the algebra A of finite linear combinations of the restrictions
χn|G′ . Since the characters χn separate points, so does A and hence as in the proof of
Theorem 3.47A is dense in L2(G′). Any character on G′ not of the form χn|G′ would
need to be orthogonal to A and hence cannot exist.

We conclude that χ = χn ◦ Φ for some n ∈ Zd. Therefore,

χ((zγ)γ) = e2πi(n1zγ1+...+ndzγd ) = e2πizγ0

where γ0 = n1γ1 + . . .+ ndγd. This concludes the exercise.

4. a) By the already given explanations we only need to prove that the topology is
metrizable and that addition is continuous.
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The former follows directly from Exercise 1b), Sheet 0 where we proved that
a countable product of metrizable spaces is metrizable. So the topology on the
space X =

∏
m Z/pmZ is metrizable and hence the same holds for the induced

topology on Zp. We remark that the standard metric on Zp is given by

dp(a, b) =

{
p− inf{k|ak 6=bk}+1 if a 6= b

0 else

for a = (am)m and b = (bm)m in Zp. One of the nice features of this metric is
that dp(a, b) = dp(a− b, 0).

To prove that addition is continuous, it suffices to prove that the addition map
X ×X → X is continuous. Let U be an open neighborhood of a ∈ X . Since the
topology on X is the product topology and each of the factors in X is discrete,
we may assume that U is given by

U = {x ∈ X : xm = am for all m ∈ F}

where F ⊂ N is a finite set. The preimage of U under the addition map is the
set of points (x, y) with xm = −ym − am for all m ∈ F . Let (x, y) be any such
point. Letting U1 be the set of points x′ in X with x′m = xm and defining U2

analogously we obtain that the image of U1 × U2 is in U as desired.

b) Letm be a Haar measure on Zp. By compactness we may assume thatm(Zp) = 1
holds. We would first like to compute that Haar measure of any preimage of a
points under πk. Notice that

Zp =
⊔

x∈Z/pkZ

π−1
k ({x}). (1)

For simplicity (and since it is customary) let us define pkZp as the preimage of
zero under πk. If x′ is any point in π−1

k ({x}) for x ∈ Z/pkZ then we have

π−1
k ({x}) = x′ + π−1

k ({0}) = x′ + pkZp.

Left invariance of the Haar measure thus shows that

m(π−1
k ({x})) = m(pkZp)

in this case. It is however easy to see that the projection maps are surjective. For
instance, by viewing Z as a subset of Zp via the map x′ 7→ (. . . , x′, x′, x′).

Summing this up, if we take the Haar measure in (1) we obtain

1 = m(Zp) =
∑

x∈Z/pkZ

m(π−1
k ({x})) = pkm(pkZp).

4



Therefore, any preimage of a point under πk has measure p−k.

We claim that this property characterizes the measure uniquely. First of all, notice
that any open set O ⊂ Zp may be written as a countable disjoint union of sets
of the form x + pkZp. By definition of the product topology it is certainly true
that O may be written as a union of finite intersections of such sets. If there is
a ∈ (x+pkZp)∩ (y+p`Zp) then for k ≥ ` then πm(a−x) = am−xm is zero for
all m ≤ k. Applying this to y we obtain ym = am for m ≤ ` as well so ym = xm
for m ≤ `. Thus, (y + p`Zp) ⊂ (x + pkZp) and O may be written in the desired
fashion. The union is countable as Zp is compact. Therefore, the measure of any
open set is determined by m(pkZp) = p−k for all k ∈ Z.

We now somewhat refine this argument. Note that the characteristic function of
any set of the form x + pkZp is continuous by (1). Let A be the set of finite
linear combinations of such characteristic functions. By a previous verification
A is an algebra and is thus dense in C(Zp). Density of C(Zp) in L1(Zp) as well
as ‖·‖1 ≤ ‖·‖∞ implies that A ⊂ L1(Zp) is dense. Therefore, the integral of any
integrable function on Zp is determined by the integrals of functions in A and
hence by the equality m(pkZp) = p−k for all k ∈ Z.

c) For any character χk on Z/pkZ we can define a character on Zp by χk ◦ πk. Note
that characters of this form separate points: if x 6= y ∈ Zp there is a k with xk 6=
yk. The characters of Z/pkZ separate points so there is χk with χk(xk) 6= χk(yk).
In other words, χ = χk ◦ πk satisfies χ(x) 6= χ(y) as desired.

5. To simplify notation, we let χm denote the character of the torus associated to m ∈ Z.

a) First, assume that the sequence is equidistributing. Then for any m ∈ Z

1
n

n−1∑
k=0

χm(xk)→
∫
T
χm(t) dt

as n → ∞. By orthogonality of characters, the integral is zero whenever χm is
non-trivial i.e. m 6= 0.

We first prove the converse implication for functions in C(T). For this, observe
that if f is a (finite) trigonometric sum of the form

∑′
m cmχm the convergence

1
n

n−1∑
k=0

f(xk) =
∑
m

′cm
1
n

n−1∑
k=0

χm(xk)→ c0 =

∫
T
f(t) dt

holds. Otherwise, notice that the algebra A of (finite) trigonometric polynomials
is dense in C(T) by the Theorem of Stone-Weierstrass. Therefore, if f ∈ C(T)
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is arbitrary and ε > 0, let g ∈ A with ‖f − g‖∞ < ε and choose N ∈ N large
enough such that ∣∣∣∣∣ 1

n

n−1∑
k=0

g(xk)−
∫
T
g(t) dt

∣∣∣∣∣ < ε.

Then ∣∣∣∣∣ 1
n

n−1∑
k=0

f(xk)−
∫
T
f(t) dt

∣∣∣∣∣
≤

∣∣∣∣∣ 1
n

n−1∑
k=0

f(xk)− 1
n

n−1∑
k=0

g(xk)

∣∣∣∣∣+

∣∣∣∣∣ 1
n

n−1∑
k=0

g(xk)−
∫
T
g(t) dt

∣∣∣∣∣
+

∣∣∣∣∫
T
g(t) dt−

∫
T
f(t) dt

∣∣∣∣
< 1

n

n−1∑
k=0

|f(xk)− g(xk)|+ ε+

∫
T
|f(t)− g(t)| dt < 3ε

as desired. The claim is thus proven for functions in C(T).

For the general case, let f ∈ C([0, 1]) and assume without loss of generality that
f is real-valued (otherwise, use this for the real and the imaginary part) and that
f(0) ≤ f(1) (otherwise, consider −f ). Let δ > 0 be small and define a function
f+ ∈ C(T) as follows: set f+(x) = f(x) when x ≥ δ. Otherwise, define xδ < δ
as the smallest point in [0, 1] where the linear interpolation between (δ, f(δ)) and
(0, f(1)) intersects the graph of f . Using this, we set f+(x) = f(x) for x ≥ xδ
and otherwise let f+(x) be given by the linear interpolation. Then f ≤ f+ and
by choosing δ small enough we can ensure that∫ 1

0

f+(t)− f(t) dt < ε

for some ε. Similarly, one construct f− ≤ f with f−(1) = f(0), f− ≤ f and∫ 1

0

f(t)− f−(t) dt < ε

Applying the equidistribution statement to f+, f− one obtains

lim sup
n→∞

1
n

n−1∑
k=0

f(xk) ≤
∫

[0,1]

f+(t) dt ≤
∫
T
f(t) dt+ ε

lim inf
n→∞

1
n

n−1∑
k=0

f(xk) ≥
∫

[0,1]

f−(t) dt ≥
∫
T
f(t) dt− ε

from which the equidistribution statement for f follows.
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b) Notice first that the leading digit of 2n is k if and only if

k · 10m ≤ 2n < (k + 1)10m

for some m ∈ N0. Taking logarithms, this is equivalent to

log(k) +m ≤ n log10(2) < log(k + 1) +m

or in other words log(k) ≤ {nα} < log(k + 1) where α = log10(2).

Note that α is irrational. Indeed, if log10(2) = p
q

for some rational number p
q

then
2q = 10p. Since 5p divides the right hand side, it divides the left hand side so
p = 0 and thus q = 0 which is impossible.

Let f be the characteristic function of the interval Ik = [log10(k), log10(k + 1)).
Since f is not continuous we cannot apply a) directly, but need to approximate f
from above and below by continuous functions. Note that the class of functions
where this can be done is exactly the set of Riemann-integrable functions. Pick
for ε > 0 continuous functions f+, f− : [0, 1]→ R with

f− ≤ f ≤ f+,

∫
[0,1]

f+(t)− f−(t) dt < ε.

Such functions can for instance be picked to be piecewise linear. The desired
statement for f then follows as in a).

6. a) We should first explain what we mean by a Ck-function on Td. We identify any
function f : Td → C with a Zd-periodic function Rd → C also denoted by f .
A function f : Td → C is Ck if its counterpart f : Rd → C is Ck. So we
may naturally view Ck(Td) ⊂ Ck

b (Rd) where the latter is a Banach space by the
referenced example. The norm on Ck

b (Rd) has the property that is describe also
in the exercise.

It remains to show that Ck(Td) ⊂ Ck
b (Rd) is closed. For this, let fk → f whe-

re the functions fk ∈ Ck
b (Rd) are Zd-periodic and f ∈ Ck

b (Rd). Note that pe-
riodicity of the functions fk implies periodicity of the all of their derivatives.
We need to show that f is Zd-periodic. Clearly, we have pointwise convergence
fk(x) → f(x) and so for any n ∈ Zd and x ∈ Rd taking limits in the equality
fk(x) = fk(x+ n) implies the desired statement.

b) Let f ∈ C∞(Td) and write

f =
∑
n∈Zd

an(f)χn.
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Then we can apply Theorem 3.57 to any derivative ∂αf of f to obtain that

‖∂αf‖∞ ≤
∑
n∈Z

|an(∂αf)| =
∑
n∈Z

(2π)‖α‖1|nα||an(f)| <∞

where nα = nα1
1 · · ·n

αd
d . Applying this to all α of the form n2`1

1 · · ·n
2`d
d with

`1 + . . .+ `d = ` we obtain by summing using the multinomial theorem∑
n∈Z

‖n‖2`
2 |an(f)| <∞.

In particular,
∑

n∈Z(1 + ‖n‖2`
2 )|an(f)| < ∞ and thus (1 + ‖n‖2`

2 )|an(f)| is a
bounded sequence. This proves the first direction.

Now let f : Td → C be square-integrable with the property that

|an(f)| �`
1

1 + ‖n‖2`
2

for all ` ∈ N. We first claim that∑
n∈Zd

(2π)‖α‖1|nα||an(f)| <∞ (2)

for any multiindex α. Surely, for n ∈ Zd fixed and j ∈ {1, . . . , d} we have using
the binomial theorem

|nj|αj ≤ (1 + n2
j)
αj ≤ (1 + ‖n‖2

2)αj =

αj∑
k=0

(
αj
k

)
‖n‖2k

2

≤
αj∑
k=0

(
αj
k

)
(1 + ‖n‖2αj

2 ) = 2αj(1 + ‖n‖2αj
2 ).

Using this same technique, the inequality

1 + xk ≤ (1 + x)k � 1 + xk (3)

follows for x ≥ 0. Thus, by taking products

|nα| �α

∏
j

(1 + ‖n‖2αj
2 )�d (1 + ‖n‖2‖α‖∞

2 )d � 1 + ‖n‖2‖α‖∞d
2 .

Let ` ∈ N be arbitrary (to be determined later) then applying our assumption

∑
n∈Zd

(2π)‖α‖1|nα||an(f)| �α

∑
n∈Zd

1 + ‖n‖2‖α‖∞d
2

1 + ‖n‖2`
2
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and choosing ` = k‖α‖∞d we obtain by (3)∑
n∈Zd

(2π)‖α‖1|nα||an(f)| �α

∑
n∈Zd

1 + ‖n‖2‖α‖∞d
2

(1 + ‖n‖2‖α‖∞d
2 )k

=
∑
n∈Zd

1

(1 + ‖n‖2‖α‖∞d
2 )k−1

≤
∑
n∈Zd

1

1 + ‖n‖2‖α‖∞d(k−1)
2

.

For k large enough, this sum is convergent (see Equation (3.22) for a more precise
statement). This proves the claim in (2).

This implies that the smooth function

fN =
∑

n∈Zd:‖n‖∞≤N

an(f)χn

form a Cauchy-sequence in Ck(Td) (where k is arbitrary). Indeed, for N > M
and a multiindex α we have

‖∂α(fN − fM)‖∞ ≤
∑

n∈Z:‖n‖∞>M

(2π)‖α‖1|nα||an(f)| → 0

as M → ∞ by (2). Thus, by a) the sequence (fN)N is convergent. Since k
is arbitrary, the limit must be a smooth function f̃ ∈ C∞(Td). Since uniform
convergence implies L2-convergence, the functions fN also converge to f̃ in L2,
but this must imply that f = f̃ as claimed.

c) By b) it suffices to show that

|an(f)| �`
1

1 + ‖n‖2`
2

for all ` ∈ N. In fact, since the partial derivatives ∂kj f exist and are continuous,
the partial integration in Section 3.4.3 still applies and we have

an(∂kj f) = (2πinj)
kan(f).

Therefore, since ∂kj f ∈ L2(Td)∑
n∈Z

|an(∂kj f)|2 =
∑
n∈Z

(2π)2k|nj|2k|an(f)|2 <∞

Summing over j we obtain ∑
n∈Z

‖n‖2k
2 |an(f)|2 <∞.
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By adding one and using the fact that any sequence with convergent series must
be bounded we deduce for even k

|a(f)| � 1√
1 + ‖n‖2k

2

≤ 1

1 + ‖n‖k2

as desired.

10


