Functional analysis I

D-MATH Prof. Dr. Manfred Einsiedler Andreas Wieser

Solutions for exercise sheet 6

1. Write $f = \sum_{n \in \mathbb{Z}} a_n \chi_n$ where the functions χ_n are the characters of the 1-torus and are given by $\chi_n(x) = e^{2\pi i n x}$ for $n \in \mathbb{Z}$ and $x \in \mathbb{T}$. We know that $a_0 = 0$ as $\int_{\mathbb{T}} f(t) dt = 0$. Then by Theorem 3.57 we have $f' = \sum_{n \in \mathbb{Z}} (2\pi i n) a_n \chi_n$ and so

$$||f||_{L^2}^2 = \sum_{n \in \mathbb{Z}} |a_n|^2, \quad ||f'||_{L^2}^2 = \sum_{n \in \mathbb{Z}} (2\pi)^2 n^2 |a_n|^2.$$

Since $a_0 = 0$, the inequality $|a_n|^2 \le n^2 |a_n|^2$ holds for all $n \in \mathbb{Z}$ and hence

$$||f||_{L^2}^2 \le \frac{1}{(2\pi)^2} \sum_{n \in \mathbb{Z}} (2\pi)^2 n^2 |a_n|^2 = \frac{1}{(2\pi)^2} ||f'||_{L^2}^2$$

as desired.

Now assume that $||f||_{L^2}^2 = \frac{1}{(2\pi)^2} ||f'||_{L^2}^2$. This is equivalent to $|a_n|^2 = n^2 |a_n|^2$ for all $n \in \mathbb{Z}$ and is true for n = 1 and n = -1. For |n| > 1 it implies $a_n = 0$ and thus concludes the exercise.

2. a) Note first that you can view any character χ_G on G as a character on $G \times H$ by extending it trivial i.e. by defining

$$\chi_G^{\text{ext}}(g,h) = \chi_G(g)$$

for all $(g, h) \in G \times H$. The same holds for H. We claim that the homomorphism

$$\widehat{G} \times \widehat{H} \to \widehat{G \times H}, \ (\chi_G, \chi_H) \mapsto \chi_G^{\text{ext}} \chi_H^{\text{ext}}$$

is an isomorphism. The map is injective: if $\chi_G^{\text{ext}}\chi_H^{\text{ext}}$ is the trivial character, then

$$\chi_G(g)\chi_H(h) = \chi_G^{\text{ext}}(g,h)\chi_H^{\text{ext}}(g,h) = 1$$

for all $(g,h) \in G \times H$. Applying this for $h = e_H$ yields that χ_G is trivial and applying it for $g = e_G$ yields that χ_H is trivial.

The map surjective: If χ is a character on $G \times H$ notice that

$$\chi(g,h) = \chi(g,e_H)\chi(e_G,h)$$

exactly write χ as a product of two characters, one on G and one H, as required.

b) As in the hint define for $\overline{k} = k + N\mathbb{Z} \in \mathbb{Z}/N\mathbb{Z}$

$$\chi_{\overline{k}}: \mathbb{Z}/N\mathbb{Z} \to \mathbb{S}^1, \ x + N\mathbb{Z} \mapsto \mathrm{e}^{2\pi \mathrm{i} x k/N}.$$

Notice that the division by N is what makes χ_k well-defined. One checks that χ_k is a character of $\mathbb{Z}/N\mathbb{Z}$. We claim that the map

$$\overline{k} \in \mathbb{Z}/N\mathbb{Z} \mapsto \chi_{\overline{k}} \in \widehat{\mathbb{Z}/N\mathbb{Z}}$$

is an isomorphism. It is injective: if $\chi_{\overline{k}}$ is trivial then in particular $e^{2\pi i k/N} = 1$ and hence $\frac{k}{N} \in \mathbb{Z}$ i.e. $\overline{k} = 0$.

To prove surjectivity, let¹ χ be an arbitrary character and define $\xi = \chi(\overline{1})$. Then ξ is an N-th root of unity as

$$\xi^N = \chi^N(\overline{1}) = \chi^N(\overline{N}) = \chi^N(\overline{0}) = 1.$$

and may hence be written as $\xi = e^{2\pi i k/N}$ for $k \in \{0, ..., N-1\}$. For any $\overline{x} \in \mathbb{Z}/N\mathbb{Z}$ we then have

$$\chi(\overline{x}) = \chi^x(\overline{1}) = e^{2\pi i k x/N}$$

so $\chi = \chi_{\overline{k}}$.

c) By the classification of finite abelian groups, G may be written as a product of groups G_1, \ldots, G_m as in (b). By (a)

$$\widehat{G} \cong \widehat{G_1} \times \ldots \times \widehat{G_m} \cong G_1 \times \ldots \times G_m \cong G$$

where in the second step we used (b).

3. Define

$$G = \{ (z_{\gamma})_{\gamma} \in \mathbb{T}^{\Gamma} : z_{\gamma_1 + \gamma_2} = z_{\gamma_1} + z_{\gamma_2} \text{ for all } \gamma_1, \gamma_2 \in \Gamma \}.$$

which is (as it is defined by equations) a closed subgroup of \mathbb{T}^{Γ} and hence a compact abelian group. Note that checking that \mathbb{T}^{Γ} is a metrizable topological group can be done as in the solution to 4a). The group *G* naturally identifies with the group of characters of Γ when Γ is equipped with the discrete topology.

It remains to find all characters of G. For $\gamma_0 \in \Gamma$ the map

$$\chi_{\gamma_0}: (z_\gamma)_\gamma \in G \mapsto \mathrm{e}^{2\pi \mathrm{i} z_{\gamma_0}}$$

¹Alternatively, one can show that the characters $\chi_{\overline{k}}$ separate points.

defines a character of G. The character χ_{γ_0} is trivial if $z_{\gamma_0} = 0$ for all $(z_{\gamma})_{\gamma}$ and thus $\gamma_0 = 0$ as otherwise this would contradict the theorem on completeness of characters (because G identifies with the group of characters of Γ). In other words, we have obtain a map

$$\gamma_0 \in \Gamma \mapsto \chi_{\gamma_0} \in \widehat{G}$$

which is in fact an injective homomorphism by definition of G.

It remains to show that any character χ on G can be written as $\chi = \chi_{\gamma_0}$ for some $\gamma_0 \in \Gamma$. By continuity of χ , $\chi^{-1}(B_{1/10}^{\mathbb{S}^1}(1))$ is open and contains the identity, so we may choose an open set U of the form $\prod_{\gamma} U_{\gamma} \cap G$ with $\chi(U) \subset B_{1/10}^{\mathbb{S}^1}(1)$ where all but finitely many U_{γ} are equal to \mathbb{T} . We list the exceptions as $U_{\gamma_1}, \ldots, U_{\gamma_d}$. Then U contains

$$H = \{ (z_{\gamma})_{\gamma} \in G : z_{\gamma_1} = \ldots = z_{\gamma_d} = 0 \}$$

which is a closed subgroup of G. By definition of U, the character χ maps H to $B_{1/10}^{\mathbb{S}^1}(1)$. But then $\chi|_H$ must be trivial as otherwise any $z = (z_{\gamma})_{\gamma} \in H$ with $\chi(z) \neq 1$ can be multiplied by $n \in \mathbb{Z}$ so that $\chi(nz) = \chi(z)^n$ lies outside of $B_{1/10}^{\mathbb{S}^1}(1)$.

The above shows that χ can be viewed as a character on the group G/H which we now interpret as a subgroup of \mathbb{T}^d . In fact, we have an injective continuous homomorphism

$$\Phi: G/H \ni (z_{\gamma})_{\gamma} + H \mapsto (z_{\gamma_1}, \dots, z_{\gamma_d}) \in \mathbb{T}^d$$

which induces therefore an isomorphism (and a homeomorphism) with the image G'. Thus, χ yields a character on G'.

Let us briefly describe the characters on G' and note that any character χ_n on \mathbb{T}^d for $n \in \mathbb{Z}^d$ yields a character on G'. We claim that any character on G' is of this form. Indeed, consider the algebra \mathcal{A} of finite linear combinations of the restrictions $\chi_n|_{G'}$. Since the characters χ_n separate points, so does \mathcal{A} and hence as in the proof of Theorem 3.47 \mathcal{A} is dense in $L^2(G')$. Any character on G' not of the form $\chi_n|_{G'}$ would need to be orthogonal to \mathcal{A} and hence cannot exist.

We conclude that $\chi = \chi_n \circ \Phi$ for some $n \in \mathbb{Z}^d$. Therefore,

$$\chi((z_{\gamma})_{\gamma}) = e^{2\pi i (n_1 z_{\gamma_1} + \dots + n_d z_{\gamma_d})} = e^{2\pi i z_{\gamma_0}}$$

where $\gamma_0 = n_1 \gamma_1 + \ldots + n_d \gamma_d$. This concludes the exercise.

4. a) By the already given explanations we only need to prove that the topology is metrizable and that addition is continuous.

The former follows directly from Exercise 1b), Sheet 0 where we proved that a countable product of metrizable spaces is metrizable. So the topology on the space $X = \prod_m \mathbb{Z}/p^m\mathbb{Z}$ is metrizable and hence the same holds for the induced topology on \mathbb{Z}_p . We remark that the standard metric on \mathbb{Z}_p is given by

$$d_p(a,b) = \begin{cases} p^{-\inf\{k|a_k \neq b_k\}+1} & \text{if } a \neq b\\ 0 & \text{else} \end{cases}$$

for $a = (a_m)_m$ and $b = (b_m)_m$ in \mathbb{Z}_p . One of the nice features of this metric is that $d_p(a, b) = d_p(a - b, 0)$.

To prove that addition is continuous, it suffices to prove that the addition map $X \times X \to X$ is continuous. Let U be an open neighborhood of $a \in X$. Since the topology on X is the product topology and each of the factors in X is discrete, we may assume that U is given by

$$U = \{x \in X : x_m = a_m \text{ for all } m \in F\}$$

where $F \subset \mathbb{N}$ is a finite set. The preimage of U under the addition map is the set of points (x, y) with $x_m = -y_m - a_m$ for all $m \in F$. Let (x, y) be any such point. Letting U_1 be the set of points x' in X with $x'_m = x_m$ and defining U_2 analogously we obtain that the image of $U_1 \times U_2$ is in U as desired.

b) Let m be a Haar measure on \mathbb{Z}_p . By compactness we may assume that $m(\mathbb{Z}_p) = 1$ holds. We would first like to compute that Haar measure of any preimage of a points under π_k . Notice that

$$\mathbb{Z}_p = \bigsqcup_{x \in \mathbb{Z}/p^k \mathbb{Z}} \pi_k^{-1}(\{x\}).$$
(1)

For simplicity (and since it is customary) let us define $p^k \mathbb{Z}_p$ as the preimage of zero under π_k . If x' is any point in $\pi_k^{-1}(\{x\})$ for $x \in \mathbb{Z}/p^k \mathbb{Z}$ then we have

$$\pi_k^{-1}(\{x\}) = x' + \pi_k^{-1}(\{0\}) = x' + p^k \mathbb{Z}_p.$$

Left invariance of the Haar measure thus shows that

$$m(\pi_k^{-1}(\{x\})) = m(p^k \mathbb{Z}_p)$$

in this case. It is however easy to see that the projection maps are surjective. For instance, by viewing \mathbb{Z} as a subset of Z_p via the map $x' \mapsto (\ldots, x', x', x')$.

Summing this up, if we take the Haar measure in (1) we obtain

$$1 = m(\mathbb{Z}_p) = \sum_{x \in \mathbb{Z}/p^k \mathbb{Z}} m(\pi_k^{-1}(\{x\})) = p^k m(p^k \mathbb{Z}_p).$$

Therefore, any preimage of a point under π_k has measure p^{-k} .

We claim that this property characterizes the measure uniquely. First of all, notice that any open set $O \subset \mathbb{Z}_p$ may be written as a countable disjoint union of sets of the form $x + p^k \mathbb{Z}_p$. By definition of the product topology it is certainly true that O may be written as a union of finite intersections of such sets. If there is $a \in (x + p^k \mathbb{Z}_p) \cap (y + p^\ell \mathbb{Z}_p)$ then for $k \ge \ell$ then $\pi_m(a - x) = a_m - x_m$ is zero for all $m \le k$. Applying this to y we obtain $y_m = a_m$ for $m \le \ell$ as well so $y_m = x_m$ for $m \le \ell$. Thus, $(y + p^\ell \mathbb{Z}_p) \subset (x + p^k \mathbb{Z}_p)$ and O may be written in the desired fashion. The union is countable as \mathbb{Z}_p is compact. Therefore, the measure of any open set is determined by $m(p^k \mathbb{Z}_p) = p^{-k}$ for all $k \in \mathbb{Z}$.

We now somewhat refine this argument. Note that the characteristic function of any set of the form $x + p^k \mathbb{Z}_p$ is continuous by (1). Let \mathcal{A} be the set of finite linear combinations of such characteristic functions. By a previous verification \mathcal{A} is an algebra and is thus dense in $C(\mathbb{Z}_p)$. Density of $C(\mathbb{Z}_p)$ in $L^1(\mathbb{Z}_p)$ as well as $\|\cdot\|_1 \leq \|\cdot\|_{\infty}$ implies that $\mathcal{A} \subset L^1(\mathbb{Z}_p)$ is dense. Therefore, the integral of any integrable function on \mathbb{Z}_p is determined by the integrals of functions in \mathcal{A} and hence by the equality $m(p^k \mathbb{Z}_p) = p^{-k}$ for all $k \in \mathbb{Z}$.

- c) For any character χ_k on Z/p^kZ we can define a character on Z_p by χ_k ∘ π_k. Note that characters of this form separate points: if x ≠ y ∈ Z_p there is a k with x_k ≠ y_k. The characters of Z/p^kZ separate points so there is χ_k with χ_k(x_k) ≠ χ_k(y_k). In other words, χ = χ_k ∘ π_k satisfies χ(x) ≠ χ(y) as desired.
- 5. To simplify notation, we let χ_m denote the character of the torus associated to $m \in \mathbb{Z}$.
 - a) First, assume that the sequence is equidistributing. Then for any $m \in \mathbb{Z}$

$$\frac{1}{n}\sum_{k=0}^{n-1}\chi_m(x_k)\to\int_{\mathbb{T}}\chi_m(t)\,\mathrm{d}t$$

as $n \to \infty$. By orthogonality of characters, the integral is zero whenever χ_m is non-trivial i.e. $m \neq 0$.

We first prove the converse implication for functions in $C(\mathbb{T})$. For this, observe that if f is a (finite) trigonometric sum of the form $\sum_{m}' c_m \chi_m$ the convergence

$$\frac{1}{n}\sum_{k=0}^{n-1}f(x_k) = \sum_m c_m \frac{1}{n}\sum_{k=0}^{n-1}\chi_m(x_k) \to c_0 = \int_{\mathbb{T}}f(t)\,\mathrm{d}t$$

holds. Otherwise, notice that the algebra \mathcal{A} of (finite) trigonometric polynomials is dense in $C(\mathbb{T})$ by the Theorem of Stone-Weierstrass. Therefore, if $f \in C(\mathbb{T})$ is arbitrary and $\epsilon > 0$, let $g \in A$ with $||f - g||_{\infty} < \epsilon$ and choose $N \in \mathbb{N}$ large enough such that

$$\left|\frac{1}{n}\sum_{k=0}^{n-1}g(x_k) - \int_{\mathbb{T}}g(t)\,\mathrm{d}t\right| < \epsilon.$$

Then

$$\begin{aligned} \left| \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) - \int_{\mathbb{T}} f(t) \, \mathrm{d}t \right| \\ &\leq \left| \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) - \frac{1}{n} \sum_{k=0}^{n-1} g(x_k) \right| + \left| \frac{1}{n} \sum_{k=0}^{n-1} g(x_k) - \int_{\mathbb{T}} g(t) \, \mathrm{d}t \right| \\ &+ \left| \int_{\mathbb{T}} g(t) \, \mathrm{d}t - \int_{\mathbb{T}} f(t) \, \mathrm{d}t \right| \\ &< \frac{1}{n} \sum_{k=0}^{n-1} |f(x_k) - g(x_k)| + \epsilon + \int_{\mathbb{T}} |f(t) - g(t)| \, \mathrm{d}t < 3\epsilon \end{aligned}$$

as desired. The claim is thus proven for functions in $C(\mathbb{T})$.

For the general case, let $f \in C([0, 1])$ and assume without loss of generality that f is real-valued (otherwise, use this for the real and the imaginary part) and that $f(0) \leq f(1)$ (otherwise, consider -f). Let $\delta > 0$ be small and define a function $f_+ \in C(\mathbb{T})$ as follows: set $f_+(x) = f(x)$ when $x \geq \delta$. Otherwise, define $x_{\delta} < \delta$ as the smallest point in [0, 1] where the linear interpolation between $(\delta, f(\delta))$ and (0, f(1)) intersects the graph of f. Using this, we set $f_+(x) = f(x)$ for $x \geq x_{\delta}$ and otherwise let $f_+(x)$ be given by the linear interpolation. Then $f \leq f_+$ and by choosing δ small enough we can ensure that

$$\int_0^1 f_+(t) - f(t) \,\mathrm{d}t < \epsilon$$

for some ϵ . Similarly, one construct $f_{-} \leq f$ with $f_{-}(1) = f(0), f_{-} \leq f$ and

$$\int_0^1 f(t) - f_-(t) \,\mathrm{d}t < \epsilon$$

Applying the equidistribution statement to f_+ , f_- one obtains

$$\limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) \le \int_{[0,1]} f_+(t) \, \mathrm{d}t \le \int_{\mathbb{T}} f(t) \, \mathrm{d}t + \epsilon$$
$$\liminf_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(x_k) \ge \int_{[0,1]} f_-(t) \, \mathrm{d}t \ge \int_{\mathbb{T}} f(t) \, \mathrm{d}t - \epsilon$$

from which the equidistribution statement for f follows.

b) Notice first that the leading digit of 2^n is k if and only if

$$k \cdot 10^m \le 2^n < (k+1)10^m$$

for some $m \in \mathbb{N}_0$. Taking logarithms, this is equivalent to

$$\log(k) + m \le n \log_{10}(2) < \log(k+1) + m$$

or in other words $\log(k) \le \{n\alpha\} < \log(k+1)$ where $\alpha = \log_{10}(2)$.

Note that α is irrational. Indeed, if $\log_{10}(2) = \frac{p}{q}$ for some rational number $\frac{p}{q}$ then $2^q = 10^p$. Since 5^p divides the right hand side, it divides the left hand side so p = 0 and thus q = 0 which is impossible.

Let f be the characteristic function of the interval $I_k = [\log_{10}(k), \log_{10}(k+1))$. Since f is not continuous we cannot apply a) directly, but need to approximate f from above and below by continuous functions. Note that the class of functions where this can be done is exactly the set of Riemann-integrable functions. Pick for $\epsilon > 0$ continuous functions $f_+, f_- : [0, 1] \to \mathbb{R}$ with

$$f_{-} \le f \le f_{+}, \quad \int_{[0,1]} f_{+}(t) - f_{-}(t) \,\mathrm{d}t < \epsilon.$$

Such functions can for instance be picked to be piecewise linear. The desired statement for f then follows as in a).

6. a) We should first explain what we mean by a C^k-function on T^d. We identify any function f : T^d → C with a Z^d-periodic function R^d → C also denoted by f. A function f : T^d → C is C^k if its counterpart f : R^d → C is C^k. So we may naturally view C^k(T_d) ⊂ C^k_b(R^d) where the latter is a Banach space by the referenced example. The norm on C^k_b(R^d) has the property that is describe also in the exercise.

It remains to show that $C^k(\mathbb{T}_d) \subset C_b^k(\mathbb{R}^d)$ is closed. For this, let $f_k \to f$ where the functions $f_k \in C_b^k(\mathbb{R}^d)$ are \mathbb{Z}^d -periodic and $f \in C_b^k(\mathbb{R}^d)$. Note that periodicity of the functions f_k implies periodicity of the all of their derivatives. We need to show that f is \mathbb{Z}^d -periodic. Clearly, we have pointwise convergence $f_k(x) \to f(x)$ and so for any $n \in \mathbb{Z}^d$ and $x \in \mathbb{R}^d$ taking limits in the equality $f_k(x) = f_k(x+n)$ implies the desired statement.

b) Let $f \in C^{\infty}(\mathbb{T}^d)$ and write

$$f = \sum_{n \in \mathbb{Z}^d} a_n(f) \chi_n$$

Then we can apply Theorem 3.57 to any derivative $\partial_{\alpha} f$ of f to obtain that

$$\|\partial_{\alpha}f\|_{\infty} \leq \sum_{n \in \mathbb{Z}} |a_n(\partial_{\alpha}f)| = \sum_{n \in \mathbb{Z}} (2\pi)^{\|\alpha\|_1} |n^{\alpha}| |a_n(f)| < \infty$$

where $n^{\alpha} = n_1^{\alpha_1} \cdots n_d^{\alpha_d}$. Applying this to all α of the form $n_1^{2\ell_1} \cdots n_d^{2\ell_d}$ with $\ell_1 + \ldots + \ell_d = \ell$ we obtain by summing using the multinomial theorem

$$\sum_{n\in\mathbb{Z}} \|n\|_2^{2\ell} |a_n(f)| < \infty.$$

In particular, $\sum_{n \in \mathbb{Z}} (1 + ||n||_2^{2\ell}) |a_n(f)| < \infty$ and thus $(1 + ||n||_2^{2\ell}) |a_n(f)|$ is a bounded sequence. This proves the first direction.

Now let $f: \mathbb{T}^d \to \mathbb{C}$ be square-integrable with the property that

$$|a_n(f)| \ll_{\ell} \frac{1}{1 + ||n||_2^{2\ell}}$$

for all $\ell \in \mathbb{N}$. We first claim that

$$\sum_{n\in\mathbb{Z}^d} (2\pi)^{\|\alpha\|_1} |n^{\alpha}| |a_n(f)| < \infty$$
(2)

for any multiindex α . Surely, for $n \in \mathbb{Z}^d$ fixed and $j \in \{1, \ldots, d\}$ we have using the binomial theorem

$$|n_{j}|^{\alpha_{j}} \leq (1+n_{j}^{2})^{\alpha_{j}} \leq (1+\|n\|_{2}^{2})^{\alpha_{j}} = \sum_{k=0}^{\alpha_{j}} {\alpha_{j} \choose k} \|n\|_{2}^{2k}$$
$$\leq \sum_{k=0}^{\alpha_{j}} {\alpha_{j} \choose k} (1+\|n\|_{2}^{2\alpha_{j}}) = 2^{\alpha_{j}} (1+\|n\|_{2}^{2\alpha_{j}}).$$

Using this same technique, the inequality

$$1 + x^k \le (1 + x)^k \ll 1 + x^k \tag{3}$$

follows for $x \ge 0$. Thus, by taking products

$$|n^{\alpha}| \ll_{\alpha} \prod_{j} (1 + ||n||_{2}^{2\alpha_{j}}) \ll_{d} (1 + ||n||_{2}^{2||\alpha||_{\infty}})^{d} \ll 1 + ||n||_{2}^{2||\alpha||_{\infty}d}.$$

Let $\ell \in \mathbb{N}$ be arbitrary (to be determined later) then applying our assumption

$$\sum_{n \in \mathbb{Z}^d} (2\pi)^{\|\alpha\|_1} |n^{\alpha}| |a_n(f)| \ll_{\alpha} \sum_{n \in \mathbb{Z}^d} \frac{1 + \|n\|_2^{2\|\alpha\|_{\infty}d}}{1 + \|n\|_2^{2\ell}}$$

and choosing $\ell = k \|\alpha\|_{\infty} d$ we obtain by (3)

$$\sum_{n \in \mathbb{Z}^d} (2\pi)^{\|\alpha\|_1} |n^{\alpha}| |a_n(f)| \ll_{\alpha} \sum_{n \in \mathbb{Z}^d} \frac{1 + \|n\|_2^{2\|\alpha\|_\infty d}}{(1 + \|n\|_2^{2\|\alpha\|_\infty d})^k}$$
$$= \sum_{n \in \mathbb{Z}^d} \frac{1}{(1 + \|n\|_2^{2\|\alpha\|_\infty d})^{k-1}}$$
$$\leq \sum_{n \in \mathbb{Z}^d} \frac{1}{1 + \|n\|_2^{2\|\alpha\|_\infty d(k-1)}}.$$

For k large enough, this sum is convergent (see Equation (3.22) for a more precise statement). This proves the claim in (2).

This implies that the smooth function

$$f_N = \sum_{n \in \mathbb{Z}^d : \|n\|_{\infty} \le N} a_n(f) \chi_n$$

form a Cauchy-sequence in $C^k(\mathbb{T}^d)$ (where k is arbitrary). Indeed, for N > M and a multiindex α we have

$$\|\partial_{\alpha}(f_N - f_M)\|_{\infty} \le \sum_{n \in \mathbb{Z}: \|n\|_{\infty} > M} (2\pi)^{\|\alpha\|_1} |n^{\alpha}| |a_n(f)| \to 0$$

as $M \to \infty$ by (2). Thus, by a) the sequence $(f_N)_N$ is convergent. Since k is arbitrary, the limit must be a smooth function $\tilde{f} \in C^{\infty}(\mathbb{T}^d)$. Since uniform convergence implies L^2 -convergence, the functions f_N also converge to \tilde{f} in L^2 , but this must imply that $f = \tilde{f}$ as claimed.

c) By b) it suffices to show that

$$|a_n(f)| \ll_{\ell} \frac{1}{1 + ||n||_2^{2\ell}}$$

for all $\ell \in \mathbb{N}$. In fact, since the partial derivatives $\partial_j^k f$ exist and are continuous, the partial integration in Section 3.4.3 still applies and we have

$$a_n(\partial_j^k f) = (2\pi \mathrm{i} n_j)^k a_n(f).$$

Therefore, since $\partial_j^k f \in L^2(\mathbb{T}^d)$

$$\sum_{n \in \mathbb{Z}} |a_n(\partial_j^k f)|^2 = \sum_{n \in \mathbb{Z}} (2\pi)^{2k} |n_j|^{2k} |a_n(f)|^2 < \infty$$

Summing over j we obtain

$$\sum_{n \in \mathbb{Z}} ||n||_2^{2k} |a_n(f)|^2 < \infty.$$

By adding one and using the fact that any sequence with convergent series must be bounded we deduce for even k

$$|a_{(f)}| \ll \frac{1}{\sqrt{1+\|n\|_{2}^{2k}}} \le \frac{1}{1+\|n\|_{2}^{k}}$$

as desired.