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1. Let mG be a Haar measure on G. We compute

〈v, f ∗π w〉 =

∫
G

〈v, f(g)πgw〉 dmG(g) =

∫
G

f(g) 〈v, πgw〉 dmG(g)

=

∫
G

f(g)
〈
π−1g v, w

〉
dmG(g) =

∫
G

f(g)
〈
w, π−1g v

〉
dmG(g).

The first equality uses the definition of the weak integral (see Proposition 3.83) and
the convolution (see Definition 3.85) and third uses that πg is unitary. Pulling the
conjugation out of the integral we may as well compute∫

G

f(g)
〈
w, π−1g v

〉
dmG(g) =

∫
G

f(g) 〈w, πg−1v〉 dmG(g)

=

∫
G

f(g−1) 〈w, πgv〉 dmG(g)

=

∫
G

〈w, f ∗(g)πgv〉 dmG(g) = 〈w, f ∗ ∗π v〉

where we used that the substitution ι : g ∈ G 7→ g−1 ∈ G preserves the Haar mea-
sure. Indeed, one verifies the measure ι∗mG defined by ι∗mG(B) = mG(ι−1(B)) for
measurable sets B is also a left Haar measure (since G is abelian). By the uniqueness
properties of Haar measure there exists λ > 0 such that ι∗mG = λmG. But then

mG = ι∗(ι∗mG) = ι∗(λmG) = λι∗mG = λ2mG

and so λ = 1. This shows that ι∗mG = mG and yields as in (3.23) for any integrable
function ψ ∫

G

ψ(g) dmG(g) =

∫
G

ψ ◦ ι−1(g) dmG =

∫
G

ψ(g−1) dmG(g).

Summing up, we have

〈v, f ∗π w〉 = 〈w, f ∗ ∗π v〉 = 〈f ∗ ∗π v, w〉

as desired.
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2. Let x = (x1, . . . , xn, 0, 0, . . . ) ∈ V . We have

‖T1x‖ ≤ · · · ≤ ‖Tnx‖ = ‖Tn+1x‖ = . . . ,

and therefore {Tnx : n ∈ N} is bounded.

On the other hand, define x(n) := (1, . . . , 1, 0, 0, . . . ) to be the sequence which is 1 in
the first n coordinates and 0 afterwards. Then ‖x(n)‖ = 1 for all n. But

‖Tnx(n)‖ = ‖(1, 2, . . . , n, 0, 0, . . . )‖ = n,

so that ‖Tn‖op ≥ n. Thus we have supn∈N ‖Tn‖op =∞ as claimed.

3. a) It is clear that H′ :=
⊕

n∈NHn contains 0 and is closed under scalar multiplica-
tion. Moreover, the inequality ‖vn +wn‖2Hn

≤ 2(‖vn‖2Hn
+ ‖wn‖2Hn

) implies that
H′ is a vector space.

The fact that 〈·, ·〉 defines an inner product is an immediate consequence of the
〈·, ·〉Hn being inner products.

To show that H′ is complete, let (x(n))n ⊆ H′ be a Cauchy sequence. Let ε > 0
be given, and let N ∈ N be such that for n1, n2 ≥ N we have∑

m≥1

‖x(n1)
m − x(n2)

m ‖2Hm
= ‖x(n1) − x(n2)‖2 < ε.

In particular, (x
(n)
m )n is a Cauchy sequence inHm for any m and thus converges.

Let xm ∈ Hm be its limit and let x = (xm)m. We claim that x ∈ H′ and that
x(n) → x as x→∞. For n ≥ N we have∑

m≥1

‖x(n)m − xm‖2Hm
= sup

M≥1

∑
m≤M

‖x(n)m − xm‖2Hm

= sup
M≥1

lim
n′→∞

∑
m≤M

‖x(n)m − x(n
′)

m ‖2Hm

≤ lim sup
n′→∞

‖x(n) − x(n′)‖2 < ε.

Since
‖x‖2 ≤ 2(‖x− x(n)‖2 + ‖x(n)‖2) <∞,

the assertion follows.

b) Define the map

Φ :
⊕
n∈N

Hn → 〈Hn〉

(vn)n 7→ lim
N→∞

∑
n≤N

vn.
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Firstly, this is a well-defined map: Let ε > 0 and let N ∈ N be such that∑
n>N ‖vn‖2Hn

< ε. Then for N1 ≥ N2 > N we have

‖
∑
n≤N1

vn −
∑
n≤N2

vn‖2 ≤
∑
n>N2

‖vn‖2 < ε.

Hence, (
∑

n≤N vn)N defines a Cauchy sequence, and since 〈Hn〉 is a Hilbert
space, it converges.

It is clear that Φ is linear. To see that it is isometric, let v = (vn)n, w = (wn)n ∈⊕
n∈NHn. Since inner products are continuous (Exercise 1, Sheet 4), we have

〈Φ(v),Φ(w)〉 = 〈 lim
N→∞

∑
n≤N

vn, lim
M→∞

∑
m≤M

wm〉

= lim
N,M→∞

∑
n≤N

∑
m≤M

〈vn, wm〉 =
∑
n≥1

〈vn, wn〉Hn = 〈v, w〉.

Lastly, we have to show that Φ is surjective. To this end, let v ∈ 〈Hn〉. Then

lim
N→∞

d(v,
⊕
n≤N

Hn) = 0.

By Corollary 3.18, the orthogonal projection of v onto
⊕

n≤N Hn is its best ap-
proximation. Hence, denoting by πn : H → Hn the projection map, we have that
for all ε > 0 there exists N ∈ N such that

‖v −
∑
n≤N

πnv‖2 = ‖v − π⊕
n≤N Hnv‖2 < ε.

This implies v = limN→∞
∑

n≤N πnv. Note also that (πnv)n ∈
⊕

n∈NHn since∑
n

‖πnv‖2 = lim
N→∞

∥∥∥∑
n≤N

πnv
∥∥∥2 = ‖v‖2.

Hence, Φ((πnv)n) = v.

4. a) We first construct a character using the hint. Let us note that H is indeed normal
as sHs−1 = H (since srs−1 = r−1) so that and character on D3/H yields a
character on D3 by precomposition with the projection D3 → D3/H .

Note that H has index two in D3 (the quotient D3/H is generated by sH) so that
there are two characters on D3/H , namely the trivial character and a non-trivial
character. Let χs be the precomposition of this character with the projection abo-
ve. Then χs(s) = −1. So we have two characters on D3 and want to know if we
can possibly find more.
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So let χ be an arbitrary character on D3. Since χ(s)2 = χ(s2) = 1 we must have
either χ(s) = 1 or χ(s) = −1. In the latter case we can replace χ by χχ−1s and
may thus assume that χ(s) = 1. Then

χ(r−1) = χ(srs−1) = χ(s)χ(r)χ(s−1) = χ(r)

so χ(r)2 = χ(r2) = 1. This implies that

χ(r) = χ(rr3) = χ(r2)2 = 1

and shows that χ is trivial. Thus, the trivial character and χs are the full set of
characters on D3.

These do not separate points as for instance χs(r) = 1 and so there is no character
that separates 1 from r.

b) Theorem 3.80 implies that

H =
⊕
χ′

Hχ′

where χ′ runs over all characters of H . Since Z/3Z ' H and χ2 6= 1, 1, χ, χ2

are all characters of H and so we obtain the desired decomposition.

To give an elementary argument (without referring to Theorem 3.80) let us write
down an explicit decomposition. For this, let v ∈ H be arbitrary and define

v0 = v + πrv + πr2v

v1 = v + ξπrv + ξ2πr2v

v2 = v + ξ2πrv + ξ4πr2v

where ξ is a non-trivial third root of unity such as ξ = e2πi/3. Then

πrv0 = πrv + πr2v + πr3v = πrv + πr2v + v = v0

πrv1 = πrv + ξπr2v + ξ2πr3v = ξ−1v1

πrv2 = πrv + ξ2πr2v + ξ4πr3v = ξv2

so v0 ∈ H1, v1 ∈ Hχ2 and v2 ∈ Hχ. The matrix1 1 1
1 ξ ξ2

1 ξ2 ξ4


has determinant (ξ − 1)(ξ2 − 1)(ξ2 − ξ), is invertible and hence v can be written
as a linear combination of v0, v1, v2. Of course, one can write it down explicitly:

v = 1
3
(v0 + v1 + v2)
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c) Let v ∈ H1 (or equivalently πrv = v). To show that πsv ∈ H1 we compute

πr(πsv) = πsπsrsv = πsπr−1v = πsv.

Let v ∈ Hχ. Then

πr(πsv) = πsπsrsv = πsπr−1v = χ(r−1)πsv = χ2(r)πsv

and so πsv ∈ Hχ2 .

Let v ∈ Hχ2 . Then

πr(πsv) = πsπsrsv = πsπr−1v = χ2(r−1)πsv = χ(r)πsv

as desired.

5. We would like to define a continuous injective linear map

ι : `1(Z)→ C(T).

For this, we define for any a ∈ `1(Z)

ι(a) =
∑
n∈Z

anχn.

We first need to show that the right hand side is absolutely convergent, which then
implies that ι(a) ∈ C(T) as C(T) is a Banach space. Indeed, for any a ∈ `1(Z) the
triangle inequality implies∑

n∈Z

|an|‖χn‖∞ =
∑
n∈Z

|an| = ‖a‖1 <∞ (1)

and thus ι is well-defined. It follows also from the definition that ι is linear. Further-
more, the inequality

‖ι(a)‖∞ ≤
∑
n∈Z

|an|‖χn‖∞ = ‖a‖1

as in (1) implies that ι is bounded and thus linear. Injectivity follows from the fact
that for any a ∈ `1(Z) the series

∑
n∈Z anχn converges in L2 (as ‖·‖2 ≤ ‖·‖∞)

which yields that the coefficients are uniquely determined (see Theorem 3.54). In
fact, they are given by an = 〈ι(a), χn〉 for all n ∈ Z which shows that for any a, a′

with ι(a) = ι(a′), an = a′n holds for all n ∈ Z i.e. a = a′.

It remains to show that ι satisfies

ι(a)ι(b) = ι(a ∗ b)
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for all a, b ∈ `1(Z). Indeed,(∑
n∈Z

anχn

)(∑
m∈Z

bmχm

)
=
∑
m,n∈Z

anbmχn+m =
∑
k∈Z

∑
n∈Z

anbk−nχk

as desired where we used absolute convergence to interchange sums.

6. a) Fix n ∈ N and assume that f ∈ C(R2). Define the function

gn : v ∈ R2 7→
∫
T
χn(ϑ)f(k−1ϑ .v) dϑ

Using uniform continuity of the function f in large balls it is straightforward to
show that gn is continuous. We now claim that gn = fn. For this, it suffices to
prove that gn satisfies the defining property of fn (see Proposition 3.83). So let
φ ∈ L2(R2) and compute

〈φ, gn〉L2 =

∫
R2

φ(v)gn(v) dv =

∫
R2

∫
T
φ(v)χn(ϑ)f(k−1ϑ .v) dϑ dv

=

∫
T
χn(ϑ)

∫
R2

φ(v)πkϑf(v) dv dϑ =

∫
T
χn(ϑ) 〈φ, πkϑf〉 dϑ

=

∫
T
〈φ, χn(ϑ)πkϑf〉 dϑ.

By the uniqueness in Proposition 3.83 we deduce that gn = χn ∗ f = fn in L2.

b) For v ∈ R2, let Fv ∈ C1(T) be defined by

Fv(ϑ) = f(k−1ϑ v).

Then
fn(v) =

∫
T
χn(ϑ)f(k−1ϑ v)dϑ = 〈Fv, χn〉L2(T) = an(Fv).

Theorem 3.57 therefore implies∑
n∈Z

|fn(v)| =
∑
n∈Z

|an(Fv)| �
√
‖Fv‖22 + ‖F ′v‖22.

Now
‖Fv‖22 =

∫
T
|f(k−1ϑ v)|2dϑ ≤ ‖f‖2∞,B‖v‖(0)

and from the chain rule we infer that

‖F ′v‖22 =

∫
T

∣∣∣∣〈∇f(k−1ϑ v),
∂

∂ϑ
(k−1ϑ v)

〉
R2

∣∣∣∣2 dϑ
� max{‖∂1f‖∞,B‖v‖(0), ‖∂2f‖∞,B‖v‖(0)}‖v‖
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using the Cauchy-Schwarz inequality.

In particular, for any R > 0 we have

sup
v∈BR(0)

∑
n∈Z

|fn(v)| <∞

and the claim follows.
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