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1. Let m be a Haar measure on G. We compute

(0, f ) = /G (v, f(g)mgw) dme(g) = / @) (v, myw) dma(g)

G

= /GW<7T;1U7W> dmg(g) = Gf(g)<w,7rg*111> dme(g)

The first equality uses the definition of the weak integral (see Proposition 3.83) and
the convolution (see Definition 3.85) and third uses that 7, is unitary. Pulling the
conjugation out of the integral we may as well compute

/f ) (w, m, ) dmal(g /f Tg-1v) dme(g)
:/Gf(g Y (w, mgv) dmel(g)
= [ w5 (@) dmate) = (w1 420

where we used that the substitution ¢ : ¢ € G + ¢g~! € G preserves the Haar mea-
sure. Indeed, one verifies the measure ¢, m¢ defined by t.mg(B) = ma(:~*(B)) for
measurable sets B is also a left Haar measure (since G is abelian). By the uniqueness
properties of Haar measure there exists A > 0 such that t,mg = Am(. But then

ma = t(tama) = t.(Ama) = Moma = N>mg

and so A = 1. This shows that ¢.,mg = m¢ and yields as in (3.23) for any integrable
function

/Gw<g>dmc<g>:/6wow de—/w ) dma(g).

Summing up, we have

(0, f #p w) = (w, f**, v) = ([ %7 v, W)

as desired.



2.

3.

Letz = (z1,...,%,,0,0,...) € V. We have
[Tzl < - < Tzl = [|Tagazll = -
and therefore {T,,x : n € N} is bounded.

On the other hand, define 2™ := (1,...,1,0,0,...) to be the sequence which is 1 in
the first n coordinates and 0 afterwards. Then ||z(™ || = 1 for all n. But

1Tz ™ = [1(1,2,...,n,0,0,...)] = n,

so that ||T,||op > n. Thus we have sup,,cy || 15 ||op = 00 as claimed.

a) It is clear that H' := @neN ‘H,, contains 0 and is closed under scalar multiplica-
tion. Moreover, the inequality ||v, 4+ w,[3, < 2(||v,l3,, + [|wn |7, ) implies that
‘H' is a vector space.

The fact that (-, -) defines an inner product is an immediate consequence of the
(-, )3, being inner products.

To show that ' is complete, let (z(™),, C H’ be a Cauchy sequence. Let ¢ > 0
be given, and let V € N be such that for n,,n, > N we have

S lelp) = ali By, = [l = 2P <

m>1
In particular, (1:,(7? ))n is a Cauchy sequence in #H,,, for any m and thus converges.
Let x,, € H,, be its limit and let z = (z,,,),,- We claim that x € H’ and that
™ — xasx — oo. Forn > N we have

> 2 =zl = sup Y (2 — zlf3,,
M=21

m>1 <
. !
= sup lim E |2 — ()
n’—o00
Mz1 m<M

2
Hm

< limsup ||z — 2™)|? < e.
n’—oo

Since
l2)1* < 2|z — 2™ + l2"]]?) < o0,

the assertion follows.

b) Define the map




Firstly, this is a well-defined map: Let ¢ > 0 and let N € N be such that
> non a3, < e Then for Ny > N, > N we have

1Y o= oal?< D fonl® <e

n<N; n<Na n>Np

Hence, (D, .y vn)n defines a Cauchy sequence, and since (H,) is a Hilbert
space, it converges.

It is clear that @ is linear. To see that it is isometric, let v = (v, ), w = (wy), €
D,.cn Hn- Since inner products are continuous (Exercise 1, Sheet 4), we have

(®(v), ®(w)) = ( lim Z Uy, lim Z Wip )

N—o0 M—o0

n<N m<M
i 3 S (nd = Yo, = (o)
n<N m<M n>1

Lastly, we have to show that ® is surjective. To this end, let v € (H,,). Then

lim d(v, @ H,) = 0.

N—oo
n<N

By Corollary 3.18, the orthogonal projection of v onto ®TLS ~ Hn 1s its best ap-
proximation. Hence, denoting by 7,, : H — H,, the projection map, we have that
for all € > 0 there exists N € N such that

? <e

lo =Y maol = llo —7g,_, w0

n<N

This implies v = limy 00 D ., <y Tn?. Note also that (7,v), € D, o Hn since

> llmol® = lim H > mav
N—oo
n n<N

Hence, ®((m,v),) = v.

2 2
=l

= [lv

We first construct a character using the hint. Let us note that H is indeed normal
as sHs™! = H (since srs~' = r~!) so that and character on D3/H yields a
character on D3 by precomposition with the projection D3 — D3/ H.

Note that H has index two in D3 (the quotient D3/ H is generated by sH) so that
there are two characters on D3/ H, namely the trivial character and a non-trivial
character. Let x be the precomposition of this character with the projection abo-
ve. Then y;(s) = —1. So we have two characters on D3 and want to know if we
can possibly find more.



b)

So let x be an arbitrary character on Ds. Since x(s)? = x(s?) = 1 we must have
either x(s) = 1 or x(s) = —1. In the latter case we can replace x by yx; ' and
may thus assume that x(s) = 1. Then

X(rh) = x(srs™h) = x(s)x(r)x(s7") = x(r)

so x(r)* = x(r?) = 1. This implies that

X(r) = x(rr’) = x(r*)* =1
and shows that y is trivial. Thus, the trivial character and y; are the full set of
characters on Ds.
These do not separate points as for instance x () = 1 and so there is no character

that separates 1 from 7.

Theorem 3.80 implies that
"=,
X/

where ' runs over all characters of H. Since Z/37Z ~ H and x* # 1, 1, x, x*
are all characters of /' and so we obtain the desired decomposition.

To give an elementary argument (without referring to Theorem 3.80) let us write
down an explicit decomposition. For this, let v € H be arbitrary and define

Vg =V + WU + T2V

v = v+ Emu + E2m,20

vy = v+ E2mu + Empev
where ¢ is a non-trivial third root of unity such as £ = ¢>™/3. Then

Vo = TpU + T2V + T30 = TV + 7,20 + UV = U
01 = T + Empev + Emsv = My

MUy = T,pU + §2mzv + 547TT3U = &y

sovg € Hi, v € H,2 and vy € H, . The matrix

1 1
1 ¢ &
1 ¢ ¢

has determinant (£ — 1)(£2 — 1)(£2 — €), is invertible and hence v can be written
as a linear combination of vy, vy, v9. Of course, one can write it down explicitly:

V= %(’Uo—i‘vl +1}2)



¢) Letv € H, (or equivalently 7m,.v = v). To show that 7,v € H; we compute
T (TsV) = TeMgpsV = MgMp—10 = Tg0.
Letv € H,. Then
T (Ts0) = TeTgps¥ = M1 = X (r™ N mev = X2(r) 7w

and so m,v € H,pe.
Letv € H,2. Then

7-‘-1"(71'511) = TMTgpsV = MgTp—1V = Xz(ril)ﬂ'sv = X(T)TFSU

as desired.

5. We would like to define a continuous injective linear map
LN Z) — C(T).
For this, we define for any a € ('(Z)
ta) = Z A Xn-
nez

We first need to show that the right hand side is absolutely convergent, which then
implies that «(a) € C(T) as C(T) is a Banach space. Indeed, for any a € (*(Z) the
triangle inequality implies

D anlllxnlleo =D lan] = llafly < oo (1)
nez nez

and thus ¢ is well-defined. It follows also from the definition that ¢ is linear. Further-
more, the inequality

le(@)lloe < Y lanllxalloe = llalls

neL

as in (1) implies that ¢ is bounded and thus linear. Injectivity follows from the fact
that for any a € ('(Z) the series Y, anX, converges in L? (as [-[l2 < [|-]lo0)
which yields that the coefficients are uniquely determined (see Theorem 3.54). In
fact, they are given by a,, = (t(a), x») for all n € Z which shows that for any a, a’
with «(a) = (d’), a, = @/, holds foralln € Zie.a =d'.

It remains to show that ¢ satisfies

t(a)e(b) = t(a *b)



for all a,b € ¢'(Z). Indeed,

(Z aan) <Z mem) = Y buXotm =) Y abioaXn

neL mEZ m,neZ k€EZ neZ

as desired where we used absolute convergence to interchange sums.

6. a) Fixn € N and assume that f € C(R?). Define the function

b)

gn v ER? /ﬂ(ﬂ)f(k;l.v) dv
T

Using uniform continuity of the function f in large balls it is straightforward to
show that g,, is continuous. We now claim that g, = f,,. For this, it suffices to
prove that g, satisfies the defining property of f,, (see Proposition 3.83). So let
¢ € L*(R?) and compute

(D gn)r2 = /¢> ) gn(v dv—/RQ/qb () f (ky T v) d dw

= [ (@) [ otom ol dvas - / ) (6. 70, ) 9
- [ 6. tm, ao
By the uniqueness in Proposition 3.83 we deduce that g, = X, * f = f, in L%
For v € R?, let F,, € C''(T) be defined by
Fy(0) = f(ky'v).
Then
Fo0) = [ XTI 0080 = (P o) 26, = onl )

Theorem 3.57 therefore implies

Do @)= laa(E)] < \/|IFUH% +IIF113-

neL neL

Now
IF0E = [ 1705 )P0 < 11

and from the chain rule we infer that

|2 = /

<K max{ (|01 floo. By, (0)5 102 oo, 5y, 0 VI

2

0
<Vf(k‘;11)) 819 k: v >R2




using the Cauchy-Schwarz inequality.

In particular, for any 2 > 0 we have

sup 37 [fulv)] < o0

vEBR(0) nez

and the claim follows.



