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1. By the closed graph theorem (Theorem 4.28) it suffices to show that A is a closed
operator as A is defined everywhere. So assume that (xy, Azy) € graph(A) is given
for k € N and that (xy, Az,) — (x,y) € H x H. The topology on H x H is the
product topolgy here and could for instance be induced by the maximum norm (see
Sheet 1). We need to show that y = Az. For any z € H we have by continuity of the
inner product

(Azg, z) = (y, 2)
and on the other hand by self-adjointness
(Axy, z) = (xg, Az) — (x, Az) = (Ax, 2) .

By uniqueness of limits, this shows that (y, z) = (Az, z) and thus y = Ax as z was
arbitrary. (What this is saying, is that y and Az determine the same continuous linear
functional and so must be equal by injectivity in Frechet-Riesz. Alternatively, one can
apply the statement to the difference y — Axr = z and deduce that ||y — Az||* = 0.)

2. The statement will be a consequence of the Baire category theorem. Proceeding by
contradiction, assume that there are z,xo,... in X which form a basis of X. For
every n € N define

V., = span(xy, ..., T,).

By assumption, any element x of X may be written as a linear combination of finitely
many x,,’s and if £ is the biggest index appearing in this linear combination, x € V.

Thus,
Uv.=x

neN

Notice that the Vs are closed (they are finite-dimensional and thus complete) and
have empty interior. Indeed, if there is € > 0 with B.(v) C V,, for some v € V,,, then
B, C V,—v =V, If x € X\ {0} is arbitrary then 2 € B, C V,, or in other words,

lll

T = ”—f“v forsome v € V, andsox € V.

Therefore, the subspace V;, are nowhere dense and hence X is meagre. This contra-
dicts completeness of X by the Baire category theorem.



3.

a)

b)

One immediately checks that Y is a subspace: if 27, 25 € Y+ and )\ is a scalar,
then forany y € Y

(21 + Ax3)(y) = 21(y) + Azs(y) = 0.

To show that Y+ is closed, let (x}); be a sequence of elements in the annihilator
and assume that x; — z* € X". Note that convergence in the operator norm
implies pointwise convergence. Thus, forany y € Y

2% (y)| = |k (y) — 27 (y)| = 0

as k — oo which implies x*(y) = 0. As y was arbitrary, * € Y1 as desired.

. o L
We may assume that Y is closed. In fact, a continuity argument shows Y = Y+
and inf ey ||z — y|| = inf 5|z — y[[ as Y is dense in Y.

Let z € X. One equality can be obtained by elementary means: suppose that
x* € Y+ with ||z*|| < 1. Then forany y € Y

2" (2)]| = |2"(z) — 2" (y)| < l2*[[llz —yll < [z —yl|
and so

* < inf|z —y|.
()| < inflla — ]

For the converse inequality, we need to construct an element of the annihilator.
Note that there is nothing to show if z € Y and so we assume z € X \ Y. Define
a linear map

z*:a:v—i—yeZ:span(x)GBYr—)ain}f/Hx—kyH.
ye

Arguing as in Corollary 7.6 this defines a bounded linear functional on Z.

Choose a Hahn-Banach extension z* € X* of z* (see Theorem 7.3). By con-
struction, z*|y = z*|y = 0 or in other words, z* € Y. Also,

inf o + || = [«" (@)
as desired.
We consider the natural map
O YT = (X)) 2" T

where T* is defined by 7*(z + V) = 2*(z) and is well-defined as z* € Y. @ is
bijective: in fact, an inverse to ¢ is given by

T E(X)Y) st =T oreY?t



where 7 denotes the projection X — X/Y.

It remains to show that ® is an isometry. Since 7 is 1-Lipschitz, ||z*|| < ||Z*| by
submultiplicativity of the operator norm. For the converse inequality, note that
the 1-ball in X/Y is given by the cosets x + Y where x can be chosen to be in
the 1-ball of X. Thus,

sup [Tz +Y)[=  sup  [z7(x)] = []a7]]
z+YeX/Y:|z||<1 T+YeX/Y:||z||<1

as claimed.

4. We follow the hint and let {z} : n € N} be a countable dense subset of X*. By

S.

definition of the operator norm we can in fact choose x,, € X with norm at most 1
and with

|:E;;(:En)| > ||£62n||

forevery n € N. Define Y as the closure of the Q-linear span of the x,,’s. By definition,
Y contains the Q-linear span of the x,,’s as a dense subset and is hence separable. We
show that X =Y.

Assume by contradiction that X # Y. The proof of Corollary 7.6 shows that for any
given zg € X \ Y there is 2* € X* with z*|y = 0 and z*(z¢) = 1.

By density of the x)’s we may choose n, such that
[a" =y, || <€
for some € > 0. This would also imply that
|‘T:L()<xn0)| = |2 (Tn,) — x:,o(xno)l <e

since z,,, 1s inside the unit ball. On the other hand,

and both of these inequalities cannot be true for all ¢ > 0. This is a contradiction.

a) Let us first show that ¢, is surjective. So let f € (?(N)*. We need to find x €
(?(N) such that f = ¢,(z). Clearly, the desired x satisfies

F(eD) = ¢,(2)(e;) =



for all i € N where e denotes the sequence which is 1 at i and zero otherwise.
We thus define z as the sequence (f(e)); and first show that 2 € ¢9(N). For
this, fix N € N and compute

N N N
D lzal” = laallealt =Y wadalza|t = fla) = | £(a)]
n=1 n=1 n=1

where 1, is such that z,,9,, = |z, for every n € N and where a € c.(N) C (?(N)
is the sequence with a, = ¥,|7,|7 ! forn < N and a, = 0 forn > N. By
continuity of f,

[F(@)l < A lllall, = 1171 (Z !xn!q>

Putting things together yields by division ||z||, < ||f|| when taking the limit
N — oo and in particular z € ¢4(N). By definition f = ¢,(z) on finite linear
combinations of the ¢()’s i.e. on c.(N) and hence also on the whole space /7(N)
by uniqueness of continuation and density of c.(N). The above proof also shows
that ||¢,(z)|| > ||||, and so concludes the claim.

b) We again show that ¢ is a surjective isometry and begin with surjectivity. So let
f € co(N)* and define z,, = f(e(™). Then for any N € N

N N
D leal =D O = fla) = [f(@)] < [Ifllale = |1
n=1 n=1

where 9, is such that ,,9,, = |z,,| for every n € N and where a € ¢.(N) C ¢(N)
is the sequence with a,, = ¥, forn < N and a,, = 0 for n > N. Thus, taking the
limit N — oo shows that ||z||; < ||f]| and in particular x € ¢}(N). Again, f and
¢ () coincide on ¢.(N) and thus f = ¢ (7).

It remains to show that ||¢..(z)|| < ||z||;. For this, simply note that for any
a € c¢y(N)

|00 () (@)] =

oo
E T
k=1

o
< lallss D .
k=1

¢) Applying' b) and a) (to ¢*(N)*) we have isometric isomorphisms

co(N)™ =~ (1(N)* ~ (*(N).

'The isomorphism between the duals is given by precomposition.



a)

b)

To show that the image of ¢(N) in ¢o(N)** under the natural embedding ¢ is not
everything, we may as well determine the image in /*°(N). Let x € ¢y(N). As
mentioned, the first isomorphism above is given by

f € co(N)™ = f oo € (H(N)*.

To view the way ¢y(N) embeds into ¢*(N): If g € ¢o(N)* then c(x)(g) = g(z)
and so for a € (*(N)

o0

() 0 Poo(a) = Poo(a)(z) = Z aTy.

k=1

Thus, the induced embedding ¢/ : ¢yp(N) — ¢*(N)* coincides with the isometric
isomorphism (°°(N) — ¢!(N)*. In particular, since cy(N) is a proper subspace of
(>°(N), ' and thus also ¢ are not surjective.

Let Y be a subspace of X and let y* € Y*. Assume that x7, 25 € X* are two
Hahn-Banach extensions as in Theorem 7.3. If y* = 0 then ||z}|| = ||«3|| and so
x] =0=uz5.

We may thus assume that y* # 0. Replacing y* by ”Z—” (and correspondigly z}
by HZ—’” for ¢ = 1, 2) we may also suppose that

ly*ll = [le7ll = fl3]l = 1.
If 7 and 275 are distinct, strict convexity implies

* *
T+ x5
2

l2ill , llsll _
2 2

But 2* = % also satisfies z*|y = y|. and so
ly*ll < fle"fl <1
which is a contradiction.

Consider the subspace of constant functions Y of C'([0, 1], ||+ ||oc) and the functio-
nal f : a € Y — a. The evaluation map ev, € C([0, 1])* at any point = € [0, 1]
would extend f. Note that all such evaluation maps have norm one and are di-
stinct.



