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1. By the closed graph theorem (Theorem 4.28) it suffices to show that A is a closed
operator as A is defined everywhere. So assume that (xk, Axk) ∈ graph(A) is given
for k ∈ N and that (xk, Axk) → (x, y) ∈ H × H. The topology on H × H is the
product topolgy here and could for instance be induced by the maximum norm (see
Sheet 1). We need to show that y = Ax. For any z ∈ H we have by continuity of the
inner product

〈Axk, z〉 → 〈y, z〉

and on the other hand by self-adjointness

〈Axk, z〉 = 〈xk, Az〉 → 〈x,Az〉 = 〈Ax, z〉 .

By uniqueness of limits, this shows that 〈y, z〉 = 〈Ax, z〉 and thus y = Ax as z was
arbitrary. (What this is saying, is that y and Ax determine the same continuous linear
functional and so must be equal by injectivity in Frechet-Riesz. Alternatively, one can
apply the statement to the difference y − Ax = z and deduce that ‖y − Ax‖2 = 0.)

2. The statement will be a consequence of the Baire category theorem. Proceeding by
contradiction, assume that there are x1, x2, . . . in X which form a basis of X . For
every n ∈ N define

Vn = span(x1, . . . , xn).

By assumption, any element x of X may be written as a linear combination of finitely
many xn’s and if k is the biggest index appearing in this linear combination, x ∈ Vk.
Thus, ⋃

n∈N

Vn = X.

Notice that the V ′ns are closed (they are finite-dimensional and thus complete) and
have empty interior. Indeed, if there is ε > 0 with Bε(v) ⊂ Vn for some v ∈ Vn, then
Bε ⊂ Vn−v = Vn. If x ∈ X \{0} is arbitrary then x ε

‖x‖ ∈ Bε ⊂ Vn or in other words,

x = ‖x‖
ε
v for some v ∈ Vn and so x ∈ Vn.

Therefore, the subspace Vn are nowhere dense and hence X is meagre. This contra-
dicts completeness of X by the Baire category theorem.
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3. a) One immediately checks that Y ⊥ is a subspace: if x∗1, x
∗
2 ∈ Y ⊥ and λ is a scalar,

then for any y ∈ Y

(x∗1 + λx∗2)(y) = x∗1(y) + λx∗2(y) = 0.

To show that Y ⊥ is closed, let (x∗k)k be a sequence of elements in the annihilator
and assume that x∗k → x∗ ∈ X∗. Note that convergence in the operator norm
implies pointwise convergence. Thus, for any y ∈ Y

|x∗(y)| = |x∗k(y)− x∗(y)| → 0

as k →∞ which implies x∗(y) = 0. As y was arbitrary, x∗ ∈ Y ⊥ as desired.

b) We may assume that Y is closed. In fact, a continuity argument shows Y
⊥

= Y ⊥

and infy∈Y ‖x− y‖ = infy∈Y ‖x− y‖ as Y is dense in Y .

Let x ∈ X . One equality can be obtained by elementary means: suppose that
x∗ ∈ Y ⊥ with ‖x∗‖ ≤ 1. Then for any y ∈ Y

|x∗(x)| = |x∗(x)− x∗(y)| ≤ ‖x∗‖‖x− y‖ ≤ ‖x− y‖

and so

|x∗(x)| ≤ inf
y∈Y
‖x− y‖.

For the converse inequality, we need to construct an element of the annihilator.
Note that there is nothing to show if x ∈ Y and so we assume x ∈ X \Y . Define
a linear map

z∗ : ax+ y ∈ Z = span(x)⊕ Y 7→ a inf
y∈Y
‖x+ y‖.

Arguing as in Corollary 7.6 this defines a bounded linear functional on Z.

Choose a Hahn-Banach extension x∗ ∈ X∗ of z∗ (see Theorem 7.3). By con-
struction, x∗|Y = z∗|Y = 0 or in other words, x∗ ∈ Y ⊥. Also,

inf
y∈Y
‖x+ y‖ = |x∗(x)|

as desired.

c) We consider the natural map

Φ : Y ⊥ → (X/Y )∗, x∗ 7→ x∗

where x∗ is defined by x∗(x + Y ) = x∗(x) and is well-defined as x∗ ∈ Y ⊥. Φ is
bijective: in fact, an inverse to Φ is given by

x∗ ∈ (X/Y )∗ 7→ x∗ = x∗ ◦ π ∈ Y ⊥
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where π denotes the projection X → X/Y .

It remains to show that Φ is an isometry. Since π is 1-Lipschitz, ‖x∗‖ ≤ ‖x∗‖ by
submultiplicativity of the operator norm. For the converse inequality, note that
the 1-ball in X/Y is given by the cosets x + Y where x can be chosen to be in
the 1-ball of X . Thus,

sup
x+Y ∈X/Y :‖x‖≤1

|x∗(x+ Y )| = sup
x+Y ∈X/Y :‖x‖≤1

|x∗(x)| = ‖x∗‖

as claimed.

4. We follow the hint and let {x∗n : n ∈ N} be a countable dense subset of X∗. By
definition of the operator norm we can in fact choose xn ∈ X with norm at most 1
and with

|x∗n(xn)| ≥ ‖x∗n‖
2

for every n ∈ N. Define Y as the closure of the Q-linear span of the xn’s. By definition,
Y contains the Q-linear span of the xn’s as a dense subset and is hence separable. We
show that X = Y .

Assume by contradiction that X 6= Y . The proof of Corollary 7.6 shows that for any
given x0 ∈ X \ Y there is x∗ ∈ X∗ with x∗|Y = 0 and x∗(x0) = 1.

By density of the x∗n’s we may choose n0 such that

‖x∗ − x∗n0
‖ < ε

for some ε > 0. This would also imply that

|x∗n0
(xn0)| = |x∗(xn0)− x∗n0

(xn0)| < ε

since xn0 is inside the unit ball. On the other hand,

|x∗n0
(xn0)| ≥

‖x∗n‖
2
≥ ‖x∗‖−ε

2

and both of these inequalities cannot be true for all ε > 0. This is a contradiction.

5. a) Let us first show that φp is surjective. So let f ∈ `p(N)∗. We need to find x ∈
`q(N) such that f = φp(x). Clearly, the desired x satisfies

f(e(i)) = φp(x)(ei) = xi

3



for all i ∈ N where e(i) denotes the sequence which is 1 at i and zero otherwise.
We thus define x as the sequence (f(e(i)))i and first show that x ∈ `q(N). For
this, fix N ∈ N and compute

N∑
n=1

|xn|q =
N∑
n=1

|xn||xn|q−1 =
N∑
n=1

xnϑn|xn|q−1 = f(a) = |f(a)|

where ϑn is such that xnϑn = |xn| for every n ∈ N and where a ∈ cc(N) ⊂ `p(N)
is the sequence with an = ϑn|xn|q−1 for n ≤ N and an = 0 for n > N . By
continuity of f ,

|f(a)| ≤ ‖f‖‖a‖p = ‖f‖

(
N∑
n=1

|xn|q
)p

Putting things together yields by division ‖x‖q ≤ ‖f‖ when taking the limit
N → ∞ and in particular x ∈ `q(N). By definition f = φp(x) on finite linear
combinations of the e(i)’s i.e. on cc(N) and hence also on the whole space `p(N)
by uniqueness of continuation and density of cc(N). The above proof also shows
that ‖φp(x)‖ ≥ ‖x‖q and so concludes the claim.

b) We again show that φ∞ is a surjective isometry and begin with surjectivity. So let
f ∈ c0(N)∗ and define xn = f(e(n)). Then for any N ∈ N

N∑
n=1

|xn| =
N∑
n=1

ϑnxn = f(a) = |f(a)| ≤ ‖f‖‖a‖∞ = ‖f‖

where ϑn is such that xnϑn = |xn| for every n ∈ N and where a ∈ cc(N) ⊂ c0(N)
is the sequence with an = ϑn for n ≤ N and an = 0 for n > N . Thus, taking the
limit N →∞ shows that ‖x‖1 ≤ ‖f‖ and in particular x ∈ `1(N). Again, f and
φ∞(x) coincide on cc(N) and thus f = φ∞(x).

It remains to show that ‖φ∞(x)‖ ≤ ‖x‖1. For this, simply note that for any
a ∈ c0(N)

|φ∞(x)(a)| =

∣∣∣∣∣
∞∑
k=1

xkak

∣∣∣∣∣ ≤ ‖a‖∞
∞∑
k=1

|xk|.

c) Applying1 b) and a) (to `1(N)∗) we have isometric isomorphisms

c0(N)∗∗ ' `1(N)∗ ' `∞(N).

1The isomorphism between the duals is given by precomposition.
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To show that the image of c0(N) in c0(N)∗∗ under the natural embedding ι is not
everything, we may as well determine the image in `∞(N). Let x ∈ c0(N). As
mentioned, the first isomorphism above is given by

f ∈ c0(N)∗∗ 7→ f ◦ φ∞ ∈ `1(N)∗.

To view the way c0(N) embeds into `1(N): If g ∈ c0(N)∗ then ι(x)(g) = g(x)
and so for a ∈ `1(N)

ι(x) ◦ φ∞(a) = φ∞(a)(x) =
∞∑
k=1

akxk.

Thus, the induced embedding ι′ : c0(N) → `1(N)∗ coincides with the isometric
isomorphism `∞(N)→ `1(N)∗. In particular, since c0(N) is a proper subspace of
`∞(N), ι′ and thus also ι are not surjective.

6. a) Let Y be a subspace of X and let y∗ ∈ Y ∗. Assume that x∗1, x
∗
2 ∈ X∗ are two

Hahn-Banach extensions as in Theorem 7.3. If y∗ = 0 then ‖x∗1‖ = ‖x∗2‖ and so
x∗1 = 0 = x∗2.

We may thus assume that y∗ 6= 0. Replacing y∗ by y∗

‖y∗‖ (and correspondigly x∗i
by x∗i
‖y∗‖ for i = 1, 2) we may also suppose that

‖y∗‖ = ‖x∗1‖ = ‖x∗2‖ = 1.

If x∗1 and x∗2 are distinct, strict convexity implies∥∥∥∥x∗1 + x∗2
2

∥∥∥∥ < ‖x∗1‖2
+
‖x∗2‖

2
= 1

But x∗ =
x∗1+x

∗
2

2
also satisfies x∗|Y = y|∗ and so

‖y∗‖ ≤ ‖x∗‖ < 1

which is a contradiction.

b) Consider the subspace of constant functions Y ofC([0, 1], ‖·‖∞) and the functio-
nal f : a ∈ Y 7→ a. The evaluation map evx ∈ C([0, 1])∗ at any point x ∈ [0, 1]
would extend f . Note that all such evaluation maps have norm one and are di-
stinct.
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