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1. Assume first that X is relexive and denote by ι : X → X∗∗ and by ι∗ : X∗ → X∗∗∗

the natural isometric embeddings. We first relate ι and ι∗. If ` ∈ X∗∗ write ` = ι(x)
for x ∈ X and obtain for any x∗ ∈ X∗

ι∗(x∗)(`) = `(x∗) = ι(x)(x∗) = x∗(x) = x∗ ◦ ι−1(`)

In other words, ι∗ : x∗ 7→ x∗ ◦ ι−1 which is surjective as the inverse is given by
precomposition with ι.

Now assume that X∗ is reflexive and let Y = ι(X) ⊂ X∗∗. As ι is isometric, Y
is complete and thus closed. Suppose that Y 6= X∗∗ and let x∗∗ ∈ X∗∗ \ Y . By
Corollary 7.6 there exists ` ∈ X∗∗∗ such that

`|Y = 0, `(x∗∗) 6= 0.

As X∗ is reflexive, we can write ` = ι∗(x∗) for some x∗ ∈ X∗. Then for any x ∈ X

0 = `(ι(x)) = ι(x)(x∗) = x∗(x).

But this implies that x∗ = 0 (it vanishes identically on X) and thus ` = 0). This is a
contradiction to `(x∗∗) 6= 0 and hence Y = X and ι is surjective.

2. We define for any n ∈ N the half-open interval In = ( 1
n+1

, 1
n
] so that

[0, 1] =
⊔
n∈N

In ∪ {0}

As [0, 1] has finite measure, functions in L∞m ([0, 1]) are integrable. We can thus define
a linear map

Φ : L∞m ([0, 1])→ `∞(N), f 7→
(

1
|I1|

∫
I1

f dm, 1
|I2|

∫
I2

f dm, . . .
)

by averaging over the intervals In where |I| denotes the length of an interval I . Notice
that for any f ∈ L∞m ([0, 1]) and any n ∈ N we have

∣∣∣∫In f dm
∣∣∣ ≤ ‖f‖∞ and so

‖Φ(f)‖∞ ≤ ‖f‖∞. That is, Φ is bounded of norm at most one (and in fact equal to
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1). Let LIM be the Banach limit on `∞(N) and define the bounded linear functional
` = LIM ◦Φ.

We claim that ` cannot be represented by an L1-function as required in the exercise.
By contradiction, suppose that

`(f) =

∫
[0,1]

fg dm

for all f ∈ L∞m ([0, 1]) and some g ∈ L1
m([0, 1]). Consider the bounded operator (iso-

metry) Ψ : `∞(N) → L∞m ([0, 1]) which maps a sequence a = (an)n to the piecewise
constant function f with f |In = an for all n. Then Φ ◦ Ψ is the identity map and
LIM = ` ◦Ψ satisfies

LIM(a) =

∫
[0,1]

Ψ(a)g dm =
∑
n∈N

∫
In

Ψ(a)g dm =
∑
n∈N

an

∫
In

g dm.

for all a ∈ `∞(N). Notice that the sequence b = (bn)n defined by bn =
∫
In
g dm for

all n satisfies ∑
n∈N

|bn| ≤
∑
n∈N

∫
In

|g| dm = ‖g‖1 <∞

and thus lies in `1(N).

We have thus shown that the Banach limit is represented by an element b ∈ `1(N).
This however cannot be true. For instance, if e(i) denotes the sequence which is 1 at
the i-th coordinate and zero otherwise we have by invariance of the Banach limit (see
Corollary 7.14)

b1 = LIM(e(1)) = LIM(e(2)) = b2 = . . . .

Thus, b is constant and must hence by identically zero. The Banach limit however is
not identically zero, which is a contradiction.

3. For any function f ∈ `∞(Zn) and any m ∈ N we define the average

fm = 1
|Im|

∑
x∈Im

f(x)

where Im = [−m,m]n ∩ Zn. By definition

|fm| ≤ 1
|Im|

∑
x∈Im

|f(x)| ≤ ‖f‖∞.
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We have thus defined a bounded linear operator

av : `∞(Zn)→ `∞(N), f 7→ (fm)m

In fact, the norm is one and not only at most one as can be checked on the constant
functions.

Let L ∈ `∞(N)∗ be an extension of the limit function on c(N) as in the proof of
Corollary 7.14 and define

LIM = L ◦ av ∈ `∞(Zn)∗.

By submultiplicativity of norms LIM has norm at most one and in fact equal to one as
can be checked on constant functions. It remains to check the properties (i) and (ii):

(i) If f ∈ `∞(Zn) is non-negative then lim infm→∞ fm ≥ 0 and thus LIM(f) ≥ 0 as
follows from the corresponding property of the Banach-limit (see Corollary 7.14,
the second item).

(ii) Let k ∈ Zn be fixed and denote by fk the map x ∈ Zn 7→ f(x− k) as defined on
the sheet. Then for any m ∈ N

|fm − fkm| =
∣∣∣∣ 1
|Im|

∑
x∈[−m,m]n∩Zn

f(x)− 1
|Im|

∑
x∈([−m,m]n−k)∩Zn

f(x)

∣∣∣∣
≤ 1
|Im|

∑
x∈Bm

|f(x)| ≤ ‖f‖∞ |Bm|
|Im|

where Bm is the set of points that lie either(!) in the cube [−m,m]n ∩ Zn or
in the cube ([−m,m]n − k) ∩ Zn. If we can show that |Bm|

|Im| → 0 as m → ∞
then limm→∞ fm = limm→∞ f

k
m if the limit exists which shows that LIM(f) =

LIM(fk) as desired.
To prove the remaining claim, let us estimate the size of

B′m = (([−m,m]n − k) \ [−m,m]n) ∩ Zn

. Notice that this set is contained in the rectanguler annulus

[−‖k‖∞ −m, ‖k‖∞ +m]n \ [−m,m]n

which has Lebesgue measure

� (2m+ 2‖k‖∞)n−1(m+ ‖k∞‖ −m)� (m+ ‖k‖∞)n−1 � mn−1

Thus, |B
′
m|
|Im| �

1
m

which goes to zero. Applying this argument twice (symmetri-
cally) we obtain the desired claim.
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4. a) The restriction of functionals in X∗ to the subspace Y yields a bounded operator
φ′ : X∗ → Y ∗. By the Hahn-Banach theorem this operator is surjective and has
norm one. By definition its kernel is equal to Y ⊥ and hence we obtain a bijective
linear map

φ : X∗/Y ⊥ → Y ∗.

It remains to show that φ is an isometry. Let x∗ ∈ X∗ and let ε > 0. Choose
x∗0 ∈ Y ⊥ so that

‖x∗ + Y ⊥‖X∗/Y ⊥ ≤ ‖x∗ + x∗0‖ ≤ ‖x∗ + Y ⊥‖X∗/Y ⊥ + ε.

Then

‖φ(x∗ + Y ⊥)‖ = ‖x∗|Y ‖ = ‖(x∗ + x∗0)|Y ‖ ≤ ‖x∗ + x∗0‖
≤ ‖x∗ + Y ⊥‖X∗/Y ⊥ + ε

and ‖φ(x∗+Y ⊥)‖ ≤ ‖x∗+Y ⊥‖X∗/Y ⊥ since ε > 0 was arbitrary. For the converse
inequality, note that the Hahn-Banach theorem allows us to extend y∗ = φ(x∗ +
Y ⊥) to an element x̃∗ preserving the norm. Replacing x∗ by x̃∗ this shows the
claim.

b) Let ιX : X → X∗∗ be the natural embedding and similarly define ιY . Note that
as X is reflexive, X is a Banach space and thus Y is also a Banach space as it
is closed. We need to show that any element in Y ∗∗ can be represented by an
element of Y . So let ` ∈ Y ∗∗. By a) we may identify ` with an element of the
dual of X∗/Y ⊥ and by composing with the projection we obtain in particular an
element of the dual of X∗. By reflexivity of X we may write the latter as ι(x) for
x ∈ X . Note that ι(x) needs to vanish on elements of Y ⊥, that is,

ι(x)(x∗) = x∗(x) = 0

for all x∗ ∈ Y ⊥. By Exercise 3b), Sheet 8, x is an element of Y as Y is closed.

We claim that ιY (x) = `. Let y∗ ∈ Y ∗ and choose x∗ ∈ X∗ extending y∗ as in
the Hahn-Banach theorem (see a)). By the definitions we made

`(y∗) = ι(x)(x∗) = x∗(x) = y∗(x)

as x ∈ Y . This concludes the claim.

c) The Banach space `∞(N) is not reflexive as the subspace c0(N) is not reflexive
by Exercise 5, Sheet 8.

Now let (X,B, µ) be a σ-finite measure space with no atoms. We recall that the
latter means that for any A ∈ B of positive measure there exists B ∈ B with
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0 < µ(B) < µ(A). Write X =
⊔
n∈NXn for measurable subsets Xn of positive

finite measure. As in Exercise 2 define an operator

Ψ : `∞(N)→ L∞µ (X)

by sending a sequence a to the measurable function f with f |Xn = an. This is
an isometry and in particular, the image of Ψ is complete (thus closed) and not
reflexive. Hence, L∞µ (X) is not reflexive.

5. a) For f ∈ L1
µ(X) and n ∈ N let An be the set of points x ∈ X where |f(x)| > 1

n
.

Then

µ(An) 1
n
≤
∫
X

|f(x)| dµ <∞

and so An has finite measure. This implies that An is finite. Now observe that

{x ∈ X : f(x) 6= 0} =
⋃
n∈N

An

is countable as desired.

b) Let f : X → C be measurable. We may assume that f is real-valued: If the claim
holds for Re(f) and Im(f) then it also holds for f . Furthermore, we may assume
that f is bounded: Writing

X =
⋃
n∈N

{x ∈ X : |f(x)| ≤ n}

we see that there must be some n such that {x ∈ X : |f(x)| ≤ n} is cocountable
(i.e. the complement of a countable set) as otherwise X would be countable. If
the claim holds for the bounded measurable function f ′ = max(f, n) then it
holds for f .

So let f : X → [−M,M ] be measurable. We proceed inductively to construct
the set A. Consider first the measurable set {x ∈ X : f(x) ≥ 0} which is by
definition of the σ-algebra either countable of cocountable (i.e. the complement
of a countable set). Define

I1 =

{
[0,M ] if {x ∈ X : f(x) ≥ 0} is cocountable
[−M, 0] else

To proceed for any closed interval I ⊂ R denote by I` = I ∩ (−∞,mid(I)]
the left half of the interval where mid(I) is the midpoint of I , and similarly
Ir = I ∩ [mid(I),∞). Then define recursively

In+1 =

{
Irn if {x ∈ X : f(x) ∈ Irn} is cocountable
I`n else

.
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By construction (and completeness of R) the interval I =
⋂
n In consists of a

point and

A := {x ∈ X : f(x) 6∈ I} =
⋃
n∈N

{x ∈ X : f(x) 6∈ In}

is countable. This proves the claim.

c) Define the operator

φ : B(X)→ L1
µ(X)∗

by setting φ(g) : f ∈ L1
µ(X) 7→

∑
x∈X f(x)g(x) for g ∈ B(X). Notice that the

latter sum is over countably many points by a) and is absolutely convergent as∣∣∣∣∣∑
x∈X

f(x)g(x)

∣∣∣∣∣ ≤∑
x∈X

|f(x)||g(x)| ≤ ‖g‖∞‖f‖1.

for all f ∈ L1
µ(X). In particular, ‖φ(g)‖ ≤ ‖g‖∞. We first show that φ is an

isometry. For ε > 0 let x0 ∈ X such that ‖g‖∞ ≤ |g(x0)| + ε and let δx0 be the
L1-function which is 1 at x0 and zero otherwise. Notice that ‖δx0‖1 = 1. Then

|φ(g)(δx0)| = |g(x0)| ≥ ‖g‖∞ − ε

and so ‖φ(g)‖ ≥ ‖g‖∞ − ε for any ε > 0. Thus, φ is an isometry.

It remains to show that φ is onto. So let ` ∈ L1
µ(X)∗ and set g(x) = `(δx) for any

x ∈ X . The function g is bounded as

|g(x)| ≤ ‖`‖‖δx‖1 = ‖`‖.

By linear combinations one sees that φ(g) and ` are equal on functions in L1
µ(X)

of finite support. However, notice that there are dense in L1
µ(X): if f ∈ L1

µ(X)
choose an enumeration {x1, x2, . . .} = {x ∈ X : f(x) 6= 0} and note that as
the sum

∑∞
n=1 |f(xn)| converges there is for any ε > 0 some N ∈ N such that∑∞

n=N |f(xn)| < ε. Thus, f is ε-close to fN = f(x1)δx1 + . . . + f(xN)δxN . By
density φ(g) and ` most be equal on L1

µ(X).

6. Pick a normalized basis {vn}n of the finite dimensional subspace V and let {v∗n}n be
the corresponding dual basis, so we have v∗m(vn) = δmn for all 1 ≤ m,n ≤ dim(V ).
These are continuous functionals of norm one on V and we may extend them to linear
functionals on all of X . For simplicity, let us denote these again by v∗1, v

∗
2, . . .. Now

let w ∈ X be arbitrary and consider

w′ = w −
dim(V )∑
n=1

v∗n(w)vn.
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Then for any m

v∗m(w′) = v∗m(w)−
dim(V )∑
n=1

v∗n(w)v∗m(vn) = 0.

This shows that w can be written as a linear combination of an element in V and an
element in the closed subspace

W = {w′ ∈ X : v∗m(w′) = 0 for all m}.

Since W ′ ∩ V = {0} by there is a unique such linear combination, which concludes
the exercise.
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