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Solutions for exercise sheet 10

1. First of all, note that since X is finite dimensional, any linear functional on X is
continuous. Let e1, . . . , en be a basis of X and choose elements e∗i ∈ X∗ such that

e∗i (ej) = δij

for all i, j ∈ {1, . . . , n}.

Let us now prove that the weak topology is equal to the norm topology on X . In
general (without assuming that X is finite dimensional), the norm topology on X is
finer than the weak topology. This follows from the fact that any element of X∗ is
continuous in the norm topology (by definition of X∗) and that the weak topology is
the smallest (weakest) topology for which all elements of X∗ are continuous.

Let us thus show that the norm topology on X is weaker than the weak topology. For
this, we first let ε > 0 and find a weakly neighborhood of 0 ∈ Bε(0). Notice that for
any x =

∑n
i=1 aiei we have

‖x‖ ≤

∥∥∥∥∥
n∑
i=1

aiei

∥∥∥∥∥ ≤
n∑
i=1

|ai|‖ei‖ ≤ C max
i=1,...,n

|ai| = C max
i=1,...,n

|e∗i (x)|

where C =
∑n

i=1‖ei‖. Therefore,

Ne∗1,...,e
∗
n;ε/C(0) ⊂ Bε(0). (1)

Now let U ⊂ X be open in the norm topology and let x0 ∈ U . Choose ε > 0 with
Bε(x) ⊂ U . By (1) we have

Ne∗1,...,e
∗
n;ε/C(x0) = x0 +Ne∗1,...,e

∗
n;ε/C(0) ⊂ x0 +Bε(0) = Bε(x0) ⊂ U.

Thus, U is also open in the weak topology.

2. LetX be a σ-compact locally compact metric space and choose compact setsKn such
that

K1 ⊂ K◦2 ⊂ K2 ⊂ K◦3 ⊂ . . . .
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Let Λ be a positive linear functional on Cc(X). By restriction we may view Λ as a
positive linear functional on Cc(K◦n). Urysohn’s lemma and the Hahn-Banach lemma
then imply that Λ|Cc(K◦

n) can be extended to a linear functional onC(Kn). By the Riesz
representation theorem (compact case) there is a Borel measure on Kn representing
Λn. Restricting again to Cc(K◦n) one obtains a Borel measure µn with

Λ(f) =

∫
K◦

n

f dµn

for every f ∈ Cc(K◦n). From the uniqueness in the compact case of Riesz represen-
tation theorem it follows that µn+1|K◦

n
= µn for every n. Thus, one can “glue” these

measures together to obtain a measure µ on X that has the property constructed above
for functions f ∈ Cc(K

◦
n) for every n. Since any compactly supported function has

support in some K◦n this concludes the (sketch of) proof.

3. a) Let (xn)n be a weakly convergent sequence in X and let x be the limit. We will
use the Banach-Steinhaus theorem to show that (xn)n is bounded. For this, consi-
der ι(xn) for every n where ι : X → X∗∗ is the canonical isometric embedding.
By assumption, for any x∗ ∈ X∗

ι(xn)(x∗) = x∗(xn)→ x∗(x)

for n→∞. In particular, ‖ι(xn)(x∗)‖ is bounded. This shows that the operators
ι(xn) are pointwise bounded. By the Banach-Steinhaus theorem applied to X∗

and these pointwise bounded operators

sup
n∈N
‖ι(xn)‖ = sup

n∈N
‖xn‖ <∞

as desired.

b) Assume first that T is bounded and that xn → x weakly. Let y∗ ∈ Y ∗. Then
y∗ ◦ T ∈ X∗ as a composition of continuous maps and thus

y∗(Txn) = y∗ ◦ T (xn)→ y∗ ◦ T (x) = y∗(Tx)

as claimed.

Now suppose that T is a linear operator which respects weak convergence, but
is unbounded. By the second assumption there exists a sequence of unit vectors
(xn)n in X so that ‖Txn‖ > n2. Define yn = 1

n
xn for every n. Then (yn)n

converges in the norm topology (and thus also weakly) to 0 because ‖yn‖ = 1
n

tends to 0 as n → ∞. We claim that Tyn does not converge weakly to 0, giving
a contradiction. If Tyn did converge weakly, then by a) supn∈N ‖Tyn‖ would be
finite. However ‖Tyn‖ = 1

n
‖Txn‖ > n for every n.
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4. a) Assume (ãn)n is a sequence in `1(N) which converges weakly to a some element
ã ∈ `1(N), but not in norm. Define a(n) = 1

‖ãn−ã‖(ã
n − ã) (passing to a subse-

quence such that ‖ãn − ã‖ is bounded away from 0). Then ‖a(n)‖ = 1 for all n.
Moreover, for all φ ∈ `1(N)∗ we have by linearity

φ(a(n)) =
1

‖ãn − ã‖
φ(ãn − ã)→ 0

since (ãn)n does not converge in norm.

It thus remains to show that a(n)k → 0 for k ∈ N as n→∞. To do this, consider
the functional φk ∈ `1(N)∗ given by φk(a) = ak for all a ∈ `1(N). So the
remaining claim follows from weak convergence.

b) First setK0 = 1 and choose n1 so that |a(n1)
1 | ≤ 1

5
. This is possible by the compo-

nentwise convergence in part (a). Suppose we have chosen Kj−1 and nj−1 with
the desired properties. Choose nj > nj−1 large enough so that

∑Kj−1

k=1 |a
(nj)
k | ≤ 1

5
.

This is possible by the componentwise convergence to 0 (again) and the fact that
we require convergence on only finitely many components. Furthermore we may
pick Kj > Kj−1 so that

∑∞
k=Kj+1 |a

(nj)
k | ≤ 1

5
by absolute convergence of the

series (that is, a(nj) ∈ `1(N)). This concludes the construction.

c) Let b ∈ `∞(N) as on the exercise sheet. Then for all j ∈ N

1 = ‖a(nj)‖1 =
∞∑
k=1

|a(nj)
k | =

Kj−1∑
k=1

|a(nj)
k |+

Ij∑
k=Kj−1+1

|a(nj)
k |+

∞∑
k=Kj+1

|a(nj)
k |

=

Kj−1∑
k=1

|a(nj)
k |+

Ij∑
i=Ij−1+1

a
(nj)
k bk +

∞∑
i=Ij+1

|a(nj)
k |

where by construction in (b) the first and the last term are ≤ 1
5
. Therefore, we

have for all j ∈ N
Kj∑

k=Kj−1+1

a
(nj)
k bk ≥

3

5
.

From this we may conclude for all j∣∣∣∣∣
∞∑
k=1

a
(nj)
k bk

∣∣∣∣∣ = −
Kj−1∑
k=1

|a(nj)
k |+

Ij∑
k=Kj−1+1

a
(nj)
k bk −

∞∑
k=Kj+1

|a(nj)
k |

≥ −1

5
+

3

5
− 1

5
=

1

5

where we used the triangle inequality and the fact that |bk| = 1 for all k ∈ N.
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Since b ∈ `∞(N), it defines (as usual by dual pairing) a continuous linear func-
tional on `1(N) (see Sheet 8). In particular, as a(nj) → 0 weakly,

∞∑
k=1

a
(nj)
k bk →

∞∑
k=1

0 · bk = 0

as n→∞. This contradicts the inequality∣∣∣∣∣
∞∑
k=1

a
(nj)
k bk

∣∣∣∣∣ ≥ 1

5
.

5. Let x ∈ X be fixed. Notice that for any N ∈ N

1
N

N−1∑
n=1

f(T nx) =

∫
X

f dµN

where we defined the probability measure

µN = 1
N

N−1∑
n=1

δTnx.

We now use the Riesz representation theorem and the Banach-Alaoglu theorem to
construct a limit measure of this sequence of measures.

By the Riesz representation theorem (Theorem 7.44) we may identify the set of finite
Borel measures on X with the set of positive linear functionals on C(X) via the map

ν 7→ Λν = (f ∈ Cc(X) 7→
∫
X

f dν) ∈ C(X)∗.

In the literature, it is customary to simply write ν(f) instead of the notation Λν that we
chose here. This identification defines a topology on the set of finite Borel measures on
X induced by the weak∗-topology on C(X)∗. We simply call this the weak∗-topology
again.

We now restrict this identification to probability measures. Note that for any probabi-
lity measure ν on X

|Λν(f)| ≤
∫
X

|f | dν ≤ ‖f‖∞ν(X) = ‖f‖∞

for all f ∈ C(X). So Λν is in the closed unit ball in C(X)∗. By the Banach-Alaoglu
theorem (Theorem 8.10) the latter unit ball is weak∗-compact. In particular, given
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any sequences of probability measures (νn), there is a weak∗-converging subsequence
(νnj

)j . If ν is the limit, ∫
X

f dνn →
∫
X

f dν

for any f ∈ C(X) by definition of the topology. In particular, ν is also a positive
measure (as it defines a positive functional by the convergence) and a probability
measure (apply the convergence to f = 1).

We now apply this discussion to the measures µN and let (µNj
)j be a weak∗-convergent

subsequence with limit µ̃. We claim that µ̃ is T -invariant which shows by uniqueness
that µ̃ = µ. This follows from the fact that∫

X

(f ◦ T − f) dµNj
= 1

Nj

Nj−1∑
n=1

f(T n+1x)− f(T nx) = 1
Nj

(f(TNj+1x)− f(x))

goes to zero as j →∞. Indeed the left hand side converges to
∫
X

(f ◦ T − f) dµ̃ and
the right hand side to 0 as

1
Nj
‖f(TNj+1x)− f(x)‖ ≤ 2‖f‖∞

Nj

.

Also, the equality ∫
X

f ◦ T dµ̃ =

∫
X

f dµ̃

for all f ∈ C(X) implies equality for all L1-functions by density of C(X) in L1
µ̃(X).

Applying this to characteristic functions yields T -invariance of µ̃ and thus µ̃ = µ.

In summary, any converging subsequence of the sequence (µN)N converges to µ (in
the weak∗-topology). To upgrade this to convergence of the whole sequence, suppose
that (µN)N does not converge to µ. There exists thus f ∈ C(X) and ε > 0 such that∣∣∣∣∫

X

f dµN −
∫
X

f dµ

∣∣∣∣ ≥ ε

holds for N in an infinite set A ⊂ N. Choosing a subsequence Nj ∈ A we may again
by compactness assume that µNj

converge, but by the above the limit needs to be µ.
Thus, µN → µ or in other words

1
N

N−1∑
n=1

f(T nx) =

∫
X

f dµN →
∫
X

f dµ

for every f ∈ C(X) as desired.
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6. a) Suppose that U is a weakly open set. By shifting we may assume that 0 ∈ U and
pick a neighborhood N`1,...,`n;ε(0) contained in U . In particular,

V = {x ∈ X : `1(x) = . . . = `n(x) = 0} ⊂ U.

If U is bounded, then V (which is a subspace) must be trivial. Now pick x1 ∈ X
with `1(x1) = 1, x2 ∈ X with `2(x2) = 1 and `2(x1) = 0 (if `2 is not a multiple
of `1) and so forth. Then for any x ∈ X

x−
n∑
k=1

`n(x)xn ∈ V

and so X is finite-dimensional as V is trivial.

b) The weak closure of the S1 is the intersection of all weakly closed subsets contai-
ning it. By de Morgen’s law, the complement is the union of all weakly open sets
which contain no element of norm 1. So suppose that x is an element of norm
strictly less than 1 which is contained in the complement of the weak closure of
S1, and say it is in a weakly open basis element U . By (a), the open set U contains
elements of arbitrarily large norm. Indeed, the argument below shows that U con-
tains elements whose norms are any number between ‖x‖ and∞. In particular,
U must contain an element of norm 1, a contradiction. Hence the complement of
the weak closure of S1 contains elements of norm no less than 1. Thus, the weak
closure of S1 contains B1.

Let x ∈ X with ‖x‖ > 1. We wish to find a weakly open set containing x which
misses S1. By the Hahn-Banach theorem, we know there exists a linear functional
on X with φ(x) = ‖x‖ > 1 and ‖φ‖ = 1. Then for any y ∈ φ−1((1,∞)), we
have 1 < φ(y) ≤ ‖φ‖‖y‖ = ‖y‖. Hence we have found the desired set.

c) Suppose that U1, U2, . . . is a countable neighborhood basis of 0 ∈ X . By repla-
cing these sets with smaller basic open sets, we may assume that

Un = NLn;εn(0)

where Ln ⊂ X∗ is finite and εn > 0. For any ` ∈ X∗ there must be some n ∈ N
with NLn;εn(0) ⊂ N`;1(0). Thus, in particular

Vn = {x ∈ X : `(x) = 0 for all ` ∈ Ln} ⊂ N`;1(0).

More precisely, if x ∈ Vn then ax ∈ Vn and so |`(ax)| < 1 for any scalar a. Thus,
`|Vn = 0 and we may view ` as a functional on the quotient space X/Vn. Notice
that there is no point in X/Vn on which all functionals induced from Ln vanish
identically. Thus, any functional on X/Vn is a linear combination of functionals
from Ln and in particular

` =
∑
`∈Ln

a``
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for some scalar a`.

Since ` was arbitrary, this shows that any element ` ∈ X∗ can be expressed as
a linear combination of elements in the countable set

⋃
n∈N Ln. By Exercise 2,

Sheet 8, this is impossible.
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