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1. We only need to check that for any f € F(A) non-zero there is a seminorm ||-||,
which doesn’t vanish at f. However, since f is non-zero there is a € A with f(a) # 0
and thus || ]|, = | f(a)| > 0 as desired.

2. We can imitate the proof of Lemma 2.52. Let ¢ be a linear functional on X.

Firstly, assume that ¢ is continuous on X (for the locally convex topology). Then there
exists an open neighborhood Ny, a,.(0) of 0 € X such that

-----
-----

=L

x = T € Ny,
|l

..... ane(0)

----- Qn

and so |[¢(z’)| < 1. In other words, using linearity
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If x € X satisfies max,—;
Therefore,

N||zlla, = 0 then ax € Ny, ap:(0) for any scalar a.
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[£(ax)| = [al|f(x)] <1
for any scalar a which must imply that ¢(z) = 0. Thus,

()] < ¢ max [z,
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for any x € X as claimed.

For the proof of the converse, note that if

<
()| < T max [l

=1,...

for some seminorms «y, ..., ay and all x then

((N, .L%l(o)) C B1(0).
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This can be upgraded by translating to continuity of ¢ as in Lemma 2.52.



3. We begin by remarking that the defined topology on MF([0, 1]) is also the topology
induced by the open neighborhoods

Ues(fo) = {f € MF([0,1]) : A({z : | f(2) — fo(z)| > €}) < 4}
This follows from the fact that U 5(fo) D Uminge,s1(fo)-

The topology is Hausdorff: if f; # f are elements of MF([0,1]) then there is a
positive measure set on which f; and f2 are pointwise distinct. If U,, is the set of
points = € [0, 1] with | fi(z) — fo(z)| > L then |J, .y U, = U and so there must be
some U,, which has positive measure. If f e MF([0,1]) then

[f1(@) = fal)] < [fr(x) = f(2)] + [f(2) = fal@)|

for z with | f1(z) — f(z)| < 55 and | fo(z) — f(2z)| < 5 1mphes that x ¢ U,. Another
wayofsayingthismthatlfa:6U then | fi(z) — f(z )|> > or | fi(z) — f(2)] > 5.
Letd = %)\(Un) and € = % Then the open neighborhoods U, s(f1) and U, 5(f2) are
disjoint. Indeed, if there was f € U, s(f1) N U, 5(f2) then

Ma: f(@) = fil@)] > 5;:3) < 3A0n),
Az If (@) = fa(2)] > 5;.3) < 3AU)

and taking the union of the sets appearing on the left gives A(U,,) < A(U,), which is
a contradiction.

Let us prove that addition is continuous. For this, it suffices to show that for any ¢ > 0
and any f1, fo € MF([0, 1]) there exists 6 > 0 with

Us(f1) + Us(f2) CU(f1 + fa)-

So let 6 > 0 be fixed (to be determined later) and let g; € Us(f1) and g, € Us(f2).
Then for any = € [0, 1]

[(fi + fo)(@) = (g1 + g2) ()| < |fi(2) — g1(2)| + [ fa(z) — g2()].

Now if the left hand side is bigger than e than one of the terms on the right needs to
be bigger than 5. If 6 < 5 the set of points = which satisfy the latter can have at most
measure 0 + 0 < e. This shows that Us(f1) + Us(f2) C Uc(f1 + f2) whenever § < §
and in particular continuity of the addition map.

To show continuity of the multiplication, let ¢ > 0, let \y be a scalar and let f, €
MEF([0, 1]). Fix § > 0 to be determined later. Assume that \ is a scalar with |A — Ao| <
§ and that f € Us(fo). Then for any = € [0, 1]

[Aofo(@) = Af(2)] < Aol folx )|+ [2o = Allf ()]

)= I
< ollfo(z) = f2)| + 0] f ()]
< ([l +9)[fo(x) = f ()] + 6] fo(2)]



4.

As before, if the left hand side is bigger than € then

folw) = J(@)] > 53 o [fol@)] > 5

Since fy is real-valued and measurable, there is a constant A/ > 0 so that the measure
of the set of points = with | f(z)| > M is bounded by 5. Assume that § is small enough
so that M < £. Also, if § is small so that < we deduce that \f € U(\o fo)

. 2(|xo[+90) \+5
as desired.

a) It suffices to show that any neighborhood of 0 of the form U = N,, . 4,.:c(0) is
convex, balanced and absorbent. By looking at the maximum of the appearing
seminorms we may assume that U = N,..(0) (see page 293)

For convexity, note that if 29, z; € U and A € [0, 1] then by the triangle inequality
I Azo + (1 = N)z1]la < AM|zolla + (1= N)||z1]]a < Ae+ (1 = N)e =€

and so Az + (1 — Az € U.
Furthermore, U is balanced as for any € U and any scalar A with |\| < 1 we

have

Azlla = IMl[zllo < flzllo <€

To show that U is absorbent, let + € X arbitrary and assume that [|z||, # 0
(otherwise z € U and we would be done). Then

—x e U

[z Ha

This concludes the claim.

b) We need to show that addition and multiplication are continuous. For the former,
denote by

a: X xX—>X

the addition map and let U C X be open. Since it suffices to show continuity
on elements of a basis of the topology, we may assume that U is of the form
U = N,..(y). We need to show that a=*(U) is open. So let (z1,22) € a ' (U).
For any x, x4, with ||z} — 21 ||a, ||2h — 22]|o < 0 we have

2] 4+ 24 = yllo < |l2) = 21fla + l21 + 22 — Yllo + [ — 224
< 20+ ||x1 + x2 — 9|



If § > 0 is chosen small so that § < (e — [lz1 + x2 — y||) then
12} + 75 — ylla <€

which concludes the proof of continuity of the addition map.

For the multiplication map
m: X xK—=X

where K denotes the ground field we can apply a similar argument. So let (z, \) €
X x K and consider the e-neighborhood for some seminorm «. Let (z/, \') be a
further point with ||z’ — z||, < § and |\ — \'| < § for some 6 € (0,1). Then

N2~ Aella < IX = Allla’la + A2’ = 2lla < (112l + N])
< 8(llzlla + 1+ )

which is < € if § is small enough.

5. Let us note that .%(IR?) is a locally convex vector space as any non-zero function f €
7 (RY) satisfies || f||oo > 0. Also, the topology is by definition induced by countably
many seminorms as N¢ is countable.

It remains to show that .#(R?) equipped with the metric

- _ ||:17‘Pl(")8¢2(n)(f—g)||oo
d(f,g)=)» 27"
(9= 2 o8, — 9

n=1

is complete where ¢ : N — (NZ)? is a bijection. One can check that a sequence in
(R%) is a (Cauchy-) sequence if and only if it is a (Cauchy-) sequence with respect
to every seminorm — see for instance Exercise 8.66 and Sheet 0. To show that .7 (R?)
is complete, let (f,), be a Cauchy sequence which means by the above that for all

a, 3
“xaaﬂ(fn - fm)Hoo =0
whenn > m — 0.

In particular, for any «, 3 the sequence (293 f,), in Cp(R?) is a Cauchy sequence.
But C,(R?) is a Banach space (see Example 2.24) and thus there is g, 5 € Cy(R?)
with

l’aagfn — 9o,

as n — oo uniformly. Set g := go € Cy(R?).



We claim that g, 3 = 2%03g for any «, 5 (implicitly we also need to show that g is
smooth). We begin by proving the case a = 0 inductively. Note that for every n and
any h € R

h
fa(x + hej) = fulz) + /0 Oe, fn(x + tej) dt.

By uniform convergence this implies

h
gz + he;) = glx) + / Gou, (& + te;) dt.
0

where the right hand side is differentiable in & with derivative go.;. Applying the
above with derivatives of f,, instead of f, itself one can proceed to show that all
partial derivatives of g exist and that dzg = go g for all 3. We now only need to show
that g, () = x*go s(z). This follows from the pointwise (!) convergence of x“J3 f,,
to either sides.

To conclude we have shown that g is smooth and that ||2“039||cc = ||ga.8]lcc < 00 for
all o, 3 and therefore g € .%(R%). It also follows directly from the construction that g
is the limit of the sequence ( f,,),, in the locally convex topology.

. Let (f,). be a sequence in C,.(U) and let us begin with the simpler claim on the
sheet. So assume that there is a compact set X' C U with supp(f,,) C K for all n
and a function f € C.(U) with the property supp(f) C K as well as f,|x — f|x
for n — oo uniformly. By definition of the topology on C.(U) from the lecture (see
Example 8.63(4)) we need to show that for any arbitrary /' € C(U) we have f,F —
f F uniformly. But

sup (@) F(2) — f(2)F(x)] = sup |[fu(@) F () — [f(2)F ()]
< [[F o0l fn = fllc00 =0

as n — oo as desired.

For the converse direction let f,, — f € C.(U) in the topology on C.(U). Assume
by contradiction that there is no compact set X C U as above. Since f has compact
support, the union of the supports of the f,,’s has to be non-compact. We can reword
this in the following way: by passing to a subsequence ( f,,, )i of (f,), we may find
a sequence of points (xy); in U with f,, (x;) # 0 and with r, = d(z,,,0U) — 0.
By passing to a further subsequence we may also suppose that 7y > ro > rg > ...
and that xy, is not contained in the support of f; for any ¢ < k. By applying Urysohn’s
lemma for every k£ > 2 to

A ={z:d(z,0U) < rpy1} U U supp( fe)
<k



and the point z;, we find a continuous function g, € C.(U) with g(z;) = 1 and
gkla, = 0. Define

_ k
F =2 s
k=2
which is an element of C'(U) as the sum is finite at every point. For this /' we have

[ for = Fria Lo = N (e = Frin) L lle = il aille = |y (e) [1F (k)| = K.

Thus, the sequence ( f,,) cannot converge.



