Solutions for exercise sheet 11

1. We only need to check that for any $f \in \mathcal{F}(A)$ non-zero there is a seminorm $\|\cdot\|_{a}$ which doesn't vanish at f. However, since f is non-zero there is $a \in A$ with $f(a) \neq 0$ and thus $\|f\|_{a}=|f(a)|>0$ as desired.
2. We can imitate the proof of Lemma 2.52. Let ℓ be a linear functional on X.

Firstly, assume that ℓ is continuous on X (for the locally convex topology). Then there exists an open neighborhood $N_{\alpha_{1}, \ldots, \alpha_{N} ; \epsilon}(0)$ of $0 \in X$ such that

$$
\ell\left(N_{\alpha_{1}, \ldots, \alpha_{N} ; \epsilon}(0)\right) \subset B_{1}(0)
$$

If $x \in X$ is arbitrary with $\max _{n=1, \ldots, N}\|x\|_{\alpha_{n}} \neq 0$ then

$$
x^{\prime}:=\frac{\epsilon}{\max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}} x \in N_{\alpha_{1}, \ldots, \alpha_{N} ; \epsilon}(0)
$$

and so $\left|\ell\left(x^{\prime}\right)\right| \leq 1$. In other words, using linearity

$$
\left|\ell\left(x^{\prime}\right)\right|=\frac{\epsilon}{\max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}}|\ell(x)|<1 .
$$

This implies $|\ell(x)| \leq \frac{1}{\epsilon} \max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}$ as desired.
If $x \in X$ satisfies $\max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}=0$ then $a x \in N_{\alpha_{1}, \ldots, \alpha_{N} ; \epsilon}(0)$ for any scalar a. Therefore,

$$
|\ell(a x)|=|a||\ell(x)|<1
$$

for any scalar a which must imply that $\ell(x)=0$. Thus,

$$
|\ell(x)| \leq \frac{1}{\epsilon} \max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}
$$

for any $x \in X$ as claimed.
For the proof of the converse, note that if

$$
|\ell(x)| \leq L \max _{n=1, \ldots, N}\|x\|_{\alpha_{n}}
$$

for some seminorms $\alpha_{1}, \ldots, \alpha_{N}$ and all x then

$$
\ell\left(N_{\alpha_{1}, \ldots, \alpha_{N} ; \frac{1}{L+1}}(0)\right) \subset B_{1}(0) .
$$

This can be upgraded by translating to continuity of ℓ as in Lemma 2.52.
3. We begin by remarking that the defined topology on $\operatorname{MF}([0,1])$ is also the topology induced by the open neighborhoods

$$
U_{\epsilon, \delta}\left(f_{0}\right)=\left\{f \in \operatorname{MF}([0,1]): \lambda\left(\left\{x:\left|f(x)-f_{0}(x)\right|>\epsilon\right\}\right)<\delta\right\} .
$$

This follows from the fact that $U_{\epsilon, \delta}\left(f_{0}\right) \supset U_{\min \{\epsilon, \delta\}}\left(f_{0}\right)$.
The topology is Hausdorff: if $f_{1} \neq f_{2}$ are elements of $\operatorname{MF}([0,1])$ then there is a positive measure set on which f_{1} and f_{2} are pointwise distinct. If U_{n} is the set of points $x \in[0,1]$ with $\left|f_{1}(x)-f_{2}(x)\right|>\frac{1}{n}$ then $\bigcup_{n \in \mathbb{N}} U_{n}=U$ and so there must be some U_{n} which has positive measure. If $f \in \operatorname{MF}([0,1])$ then

$$
\left|f_{1}(x)-f_{2}(x)\right| \leq\left|f_{1}(x)-f(x)\right|+\left|f(x)-f_{2}(x)\right|
$$

for x with $\left|f_{1}(x)-f(x)\right| \leq \frac{1}{2 n}$ and $\left|f_{2}(x)-f(x)\right| \leq \frac{1}{2 n}$ implies that $x \notin U_{n}$. Another way of saying this is that if $x \in U_{n}$ then $\left|f_{1}(x)-f(x)\right|>\frac{1}{2 n}$ or $\left|f_{1}(x)-f(x)\right|>\frac{1}{2 n}$. Let $\delta=\frac{1}{2} \lambda\left(U_{n}\right)$ and $\epsilon=\frac{1}{2 n}$. Then the open neighborhoods $U_{\epsilon, \delta}\left(f_{1}\right)$ and $U_{\epsilon, \delta}\left(f_{2}\right)$ are disjoint. Indeed, if there was $f \in U_{\epsilon, \delta}\left(f_{1}\right) \cap U_{\epsilon, \delta}\left(f_{2}\right)$ then

$$
\begin{gathered}
\lambda\left(\left\{x:\left|f(x)-f_{1}(x)\right|>\frac{1}{2 n}\right\}\right)<\frac{1}{2} \lambda\left(U_{n}\right), \\
\lambda\left(\left\{x:\left|f(x)-f_{2}(x)\right|>\frac{1}{2 n}\right\}\right)<\frac{1}{2} \lambda\left(U_{n}\right)
\end{gathered}
$$

and taking the union of the sets appearing on the left gives $\lambda\left(U_{n}\right)<\lambda\left(U_{n}\right)$, which is a contradiction.

Let us prove that addition is continuous. For this, it suffices to show that for any $\epsilon>0$ and any $f_{1}, f_{2} \in \operatorname{MF}([0,1])$ there exists $\delta>0$ with

$$
U_{\delta}\left(f_{1}\right)+U_{\delta}\left(f_{2}\right) \subset U_{\epsilon}\left(f_{1}+f_{2}\right)
$$

So let $\delta>0$ be fixed (to be determined later) and let $g_{1} \in U_{\delta}\left(f_{1}\right)$ and $g_{2} \in U_{\delta}\left(f_{2}\right)$. Then for any $x \in[0,1]$

$$
\left|\left(f_{1}+f_{2}\right)(x)-\left(g_{1}+g_{2}\right)(x)\right| \leq\left|f_{1}(x)-g_{1}(x)\right|+\left|f_{2}(x)-g_{2}(x)\right| .
$$

Now if the left hand side is bigger than ϵ than one of the terms on the right needs to be bigger than $\frac{\epsilon}{2}$. If $\delta<\frac{\epsilon}{2}$ the set of points x which satisfy the latter can have at most measure $\delta+\delta<\epsilon$. This shows that $U_{\delta}\left(f_{1}\right)+U_{\delta}\left(f_{2}\right) \subset U_{\epsilon}\left(f_{1}+f_{2}\right)$ whenever $\delta<\frac{\epsilon}{2}$ and in particular continuity of the addition map.

To show continuity of the multiplication, let $\epsilon>0$, let λ_{0} be a scalar and let $f_{0} \in$ $\operatorname{MF}([0,1])$. Fix $\delta>0$ to be determined later. Assume that λ is a scalar with $\left|\lambda-\lambda_{0}\right|<$ δ and that $f \in U_{\delta}\left(f_{0}\right)$. Then for any $x \in[0,1]$

$$
\begin{aligned}
\left|\lambda_{0} f_{0}(x)-\lambda f(x)\right| & \leq\left|\lambda_{0}\right|\left|f_{0}(x)-f(x)\right|+\left|\lambda_{0}-\lambda\right||f(x)| \\
& <\left|\lambda_{0}\right|\left|f_{0}(x)-f(x)\right|+\delta|f(x)| \\
& \leq\left(\left|\lambda_{0}\right|+\delta\right)\left|f_{0}(x)-f(x)\right|+\delta\left|f_{0}(x)\right|
\end{aligned}
$$

As before, if the left hand side is bigger than ϵ then

$$
\left|f_{0}(x)-f(x)\right|>\frac{\epsilon}{2\left(\left|\lambda_{0}\right|+\delta\right)} \text { or }\left|f_{0}(x)\right|>\frac{\epsilon}{\delta}
$$

Since f_{0} is real-valued and measurable, there is a constant $M>0$ so that the measure of the set of points x with $|f(x)|>M$ is bounded by $\frac{\epsilon}{2}$. Assume that δ is small enough so that $M<\frac{\epsilon}{\delta}$. Also, if δ is small so that $\delta<\frac{\epsilon}{2\left(\left|\lambda_{0}\right|+\delta\right)}$ we deduce that $\lambda f \in U_{\epsilon}\left(\lambda_{0} f_{0}\right)$ as desired.
4. a) It suffices to show that any neighborhood of 0 of the form $U=N_{\alpha_{1}, \ldots, \alpha_{n} ; \epsilon}(0)$ is convex, balanced and absorbent. By looking at the maximum of the appearing seminorms we may assume that $U=N_{\alpha ; \epsilon}(0)$ (see page 293)
For convexity, note that if $x_{0}, x_{1} \in U$ and $\lambda \in[0,1]$ then by the triangle inequality

$$
\left\|\lambda x_{0}+(1-\lambda) x_{1}\right\|_{\alpha} \leq \lambda\left\|x_{0}\right\|_{\alpha}+(1-\lambda)\left\|x_{1}\right\|_{\alpha}<\lambda \epsilon+(1-\lambda) \epsilon=\epsilon
$$

and so $\lambda x_{0}+(1-\lambda) x_{1} \in U$.
Furthermore, U is balanced as for any $x \in U$ and any scalar λ with $|\lambda| \leq 1$ we have

$$
\|\lambda x\|_{\alpha}=|\lambda|\|x\|_{\alpha} \leq\|x\|_{\alpha}<\epsilon
$$

To show that U is absorbent, let $x \in X$ arbitrary and assume that $\|x\|_{\alpha} \neq 0$ (otherwise $x \in U$ and we would be done). Then

$$
\frac{\epsilon}{\|x\|_{\alpha}} x \in U
$$

This concludes the claim.
b) We need to show that addition and multiplication are continuous. For the former, denote by

$$
a: X \times X \rightarrow X
$$

the addition map and let $U \subset X$ be open. Since it suffices to show continuity on elements of a basis of the topology, we may assume that U is of the form $U=N_{\alpha ; \epsilon}(y)$. We need to show that $a^{-1}(U)$ is open. So let $\left(x_{1}, x_{2}\right) \in a^{-1}(U)$. For any $x_{1}^{\prime}, x_{2}^{\prime}$ with $\left\|x_{1}^{\prime}-x_{1}\right\|_{\alpha},\left\|x_{2}^{\prime}-x_{2}\right\|_{\alpha}<\delta$ we have

$$
\begin{aligned}
\left\|x_{1}^{\prime}+x_{2}^{\prime}-y\right\|_{\alpha} & \leq\left\|x_{1}^{\prime}-x_{1}\right\|_{\alpha}+\left\|x_{1}+x_{2}-y\right\|_{\alpha}+\left\|x_{2}^{\prime}-x_{2}\right\|_{\alpha} \\
& <2 \delta+\left\|x_{1}+x_{2}-y\right\|
\end{aligned}
$$

If $\delta>0$ is chosen small so that $\delta<\frac{1}{2}\left(\epsilon-\left\|x_{1}+x_{2}-y\right\|\right)$ then

$$
\left\|x_{1}^{\prime}+x_{2}^{\prime}-y\right\|_{\alpha}<\epsilon
$$

which concludes the proof of continuity of the addition map.
For the multiplication map

$$
m: X \times \mathbb{K} \rightarrow X
$$

where \mathbb{K} denotes the ground field we can apply a similar argument. So let $(x, \lambda) \in$ $X \times \mathbb{K}$ and consider the ϵ-neighborhood for some seminorm α. Let $\left(x^{\prime}, \lambda^{\prime}\right)$ be a further point with $\left\|x^{\prime}-x\right\|_{\alpha}<\delta$ and $\left|\lambda-\lambda^{\prime}\right|<\delta$ for some $\delta \in(0,1)$. Then

$$
\begin{aligned}
\left\|\lambda^{\prime} x^{\prime}-\lambda x\right\|_{\alpha} \leq\left|\lambda^{\prime}-\lambda\right|\left\|x^{\prime}\right\|_{\alpha}+|\lambda|\left\|x^{\prime}-x\right\|_{\alpha} & <\delta\left(\left\|x^{\prime}\right\|_{\alpha}+|\lambda|\right) \\
& <\delta\left(\|x\|_{\alpha}+1+|\lambda|\right)
\end{aligned}
$$

which is $<\epsilon$ if δ is small enough.
5. Let us note that $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is a locally convex vector space as any non-zero function $f \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$ satisfies $\|f\|_{\infty}>0$. Also, the topology is by definition induced by countably many seminorms as \mathbb{N}_{0}^{d} is countable.

It remains to show that $\mathscr{S}\left(\mathbb{R}^{d}\right)$ equipped with the metric

$$
\mathrm{d}(f, g)=\sum_{n=1}^{\infty} 2^{-n} \frac{\left\|x^{\varphi_{1}(n)} \partial_{\varphi_{2}(n)}(f-g)\right\|_{\infty}}{1+\left\|x^{\varphi_{1}(n)} \partial_{\varphi_{2}(n)}(f-g)\right\|_{\infty}}
$$

is complete where $\varphi: \mathbb{N} \rightarrow\left(\mathbb{N}_{0}^{d}\right)^{2}$ is a bijection. One can check that a sequence in $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is a (Cauchy-) sequence if and only if it is a (Cauchy-) sequence with respect to every seminorm - see for instance Exercise 8.66 and Sheet 0 . To show that $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is complete, let $\left(f_{n}\right)_{n}$ be a Cauchy sequence which means by the above that for all α, β

$$
\left\|x^{\alpha} \partial_{\beta}\left(f_{n}-f_{m}\right)\right\|_{\infty} \rightarrow 0
$$

when $n>m \rightarrow 0$.
In particular, for any α, β the sequence $\left(x^{\alpha} \partial_{\beta} f_{n}\right)_{n}$ in $C_{b}\left(\mathbb{R}^{d}\right)$ is a Cauchy sequence. But $C_{b}\left(\mathbb{R}^{d}\right)$ is a Banach space (see Example 2.24) and thus there is $g_{\alpha, \beta} \in C_{b}\left(\mathbb{R}^{d}\right)$ with

$$
x^{\alpha} \partial_{\beta} f_{n} \rightarrow g_{\alpha, \beta}
$$

as $n \rightarrow \infty$ uniformly. Set $g:=g_{0,0} \in C_{b}\left(\mathbb{R}^{d}\right)$.

We claim that $g_{\alpha, \beta}=x^{\alpha} \partial_{\beta} g$ for any α, β (implicitly we also need to show that g is smooth). We begin by proving the case $\alpha=0$ inductively. Note that for every n and any $h \in \mathbb{R}$

$$
f_{n}\left(x+h e_{j}\right)=f_{n}(x)+\int_{0}^{h} \partial_{e_{j}} f_{n}\left(x+t e_{j}\right) \mathrm{d} t
$$

By uniform convergence this implies

$$
g\left(x+h e_{j}\right)=g(x)+\int_{0}^{h} g_{0, e_{j}}\left(x+t e_{j}\right) \mathrm{d} t .
$$

where the right hand side is differentiable in h with derivative $g_{0, e_{j}}$. Applying the above with derivatives of f_{n} instead of f_{n} itself one can proceed to show that all partial derivatives of g exist and that $\partial_{\beta} g=g_{0, \beta}$ for all β. We now only need to show that $g_{\alpha, \beta}(x)=x^{\alpha} g_{0, \beta}(x)$. This follows from the pointwise (!) convergence of $x^{\alpha} \partial_{\beta} f_{n}$ to either sides.

To conclude we have shown that g is smooth and that $\left\|x^{\alpha} \partial_{\beta} g\right\|_{\infty}=\left\|g_{\alpha, \beta}\right\|_{\infty}<\infty$ for all α, β and therefore $g \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. It also follows directly from the construction that g is the limit of the sequence $\left(f_{n}\right)_{n}$ in the locally convex topology.
6. Let $\left(f_{n}\right)_{n}$ be a sequence in $C_{c}(U)$ and let us begin with the simpler claim on the sheet. So assume that there is a compact set $K \subset U$ with $\operatorname{supp}\left(f_{n}\right) \subset K$ for all n and a function $f \in C_{c}(U)$ with the property $\operatorname{supp}(f) \subset K$ as well as $\left.\left.f_{n}\right|_{K} \rightarrow f\right|_{K}$ for $n \rightarrow \infty$ uniformly. By definition of the topology on $C_{c}(U)$ from the lecture (see Example 8.63(4)) we need to show that for any arbitrary $F \in C(U)$ we have $f_{n} F \rightarrow$ $f F$ uniformly. But

$$
\begin{aligned}
\sup _{x \in U}\left|f_{n}(x) F(x)-f(x) F(x)\right| & =\sup _{x \in K}\left|f_{n}(x) F(x)-f(x) F(x)\right| \\
& \leq\|F\|_{K, \infty}\left\|f_{n}-f\right\|_{K, \infty} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ as desired.
For the converse direction let $f_{n} \rightarrow f \in C_{c}(U)$ in the topology on $C_{c}(U)$. Assume by contradiction that there is no compact set $K \subset U$ as above. Since f has compact support, the union of the supports of the f_{n} 's has to be non-compact. We can reword this in the following way: by passing to a subsequence $\left(f_{n_{k}}\right)_{k}$ of $\left(f_{n}\right)_{n}$ we may find a sequence of points $\left(x_{k}\right)_{k}$ in U with $f_{n_{k}}\left(x_{k}\right) \neq 0$ and with $r_{k}=\mathrm{d}\left(x_{n_{k}}, \partial U\right) \rightarrow 0$. By passing to a further subsequence we may also suppose that $r_{1}>r_{2}>r_{3}>\ldots$ and that x_{k} is not contained in the support of f_{ℓ} for any $\ell<k$. By applying Urysohn's lemma for every $k \geq 2$ to

$$
A_{k}=\left\{x: \mathrm{d}(x, \partial U) \leq r_{k+1}\right\} \cup \bigcup_{\ell<k} \operatorname{supp}\left(f_{\ell}\right)
$$

and the point x_{k} we find a continuous function $g_{k} \in C_{c}(U)$ with $g_{k}\left(x_{k}\right)=1$ and $\left.g_{k}\right|_{A_{k}}=0$. Define

$$
F=\sum_{k=2}^{\infty} \frac{k}{\left|f_{n_{k}}\left(x_{k}\right)\right|} g_{k}
$$

which is an element of $C(U)$ as the sum is finite at every point. For this F we have

$$
\left\|f_{n_{k}}-f_{n_{k-1}}\right\|_{F} \geq\left\|\left.\left(f_{n_{k}}-f_{n_{k-1}}\right)\right|_{A_{k}}\right\|_{F}=\left\|\left.f_{n_{k}}\right|_{A_{k}}\right\|_{F} \geq\left|f_{n_{k}}\left(x_{k}\right) \| F\left(x_{k}\right)\right|=k .
$$

Thus, the sequence $\left(f_{n}\right)$ cannot converge.

