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1. We only need to check that for any f ∈ F(A) non-zero there is a seminorm ‖·‖a
which doesn’t vanish at f . However, since f is non-zero there is a ∈ A with f(a) 6= 0
and thus ‖f‖a = |f(a)| > 0 as desired.

2. We can imitate the proof of Lemma 2.52. Let ` be a linear functional on X .

Firstly, assume that ` is continuous onX (for the locally convex topology). Then there
exists an open neighborhood Nα1,...,αN ;ε(0) of 0 ∈ X such that

`
(
Nα1,...,αN ;ε(0)

)
⊂ B1(0)

If x ∈ X is arbitrary with maxn=1,...,N‖x‖αn 6= 0 then

x′ :=
ε

maxn=1,...,N‖x‖αn

x ∈ Nα1,...,αN ;ε(0)

and so |`(x′)| ≤ 1. In other words, using linearity

|`(x′)| = ε

maxn=1,...,N‖x‖αn

|`(x)| < 1.

This implies |`(x)| ≤ 1
ε
maxn=1,...,N‖x‖αn as desired.

If x ∈ X satisfies maxn=1,...,N‖x‖αn = 0 then ax ∈ Nα1,...,αN ;ε(0) for any scalar a.
Therefore,

|`(ax)| = |a||`(x)| < 1

for any scalar a which must imply that `(x) = 0. Thus,

|`(x)| ≤ 1
ε

max
n=1,...,N

‖x‖αn

for any x ∈ X as claimed.

For the proof of the converse, note that if

|`(x)| ≤ L max
n=1,...,N

‖x‖αn

for some seminorms α1, . . . , αN and all x then

`
(
Nα1,...,αN ; 1

L+1
(0)
)
⊂ B1(0).

This can be upgraded by translating to continuity of ` as in Lemma 2.52.

1



3. We begin by remarking that the defined topology on MF([0, 1]) is also the topology
induced by the open neighborhoods

Uε,δ(f0) =
{
f ∈ MF([0, 1]) : λ({x : |f(x)− f0(x)| > ε}) < δ

}
.

This follows from the fact that Uε,δ(f0) ⊃ Umin{ε,δ}(f0).

The topology is Hausdorff: if f1 6= f2 are elements of MF([0, 1]) then there is a
positive measure set on which f1 and f2 are pointwise distinct. If Un is the set of
points x ∈ [0, 1] with |f1(x) − f2(x)| > 1

n
then

⋃
n∈N Un = U and so there must be

some Un which has positive measure. If f ∈ MF([0, 1]) then

|f1(x)− f2(x)| ≤ |f1(x)− f(x)|+ |f(x)− f2(x)|

for x with |f1(x)− f(x)| ≤ 1
2n

and |f2(x)− f(x)| ≤ 1
2n

implies that x 6∈ Un. Another
way of saying this is that if x ∈ Un then |f1(x)− f(x)| > 1

2n
or |f1(x)− f(x)| > 1

2n
.

Let δ = 1
2
λ(Un) and ε = 1

2n
. Then the open neighborhoods Uε,δ(f1) and Uε,δ(f2) are

disjoint. Indeed, if there was f ∈ Uε,δ(f1) ∩ Uε,δ(f2) then

λ({x : |f(x)− f1(x)| > 1
2n
}) < 1

2
λ(Un),

λ({x : |f(x)− f2(x)| > 1
2n
}) < 1

2
λ(Un)

and taking the union of the sets appearing on the left gives λ(Un) < λ(Un), which is
a contradiction.

Let us prove that addition is continuous. For this, it suffices to show that for any ε > 0
and any f1, f2 ∈ MF([0, 1]) there exists δ > 0 with

Uδ(f1) + Uδ(f2) ⊂ Uε(f1 + f2).

So let δ > 0 be fixed (to be determined later) and let g1 ∈ Uδ(f1) and g2 ∈ Uδ(f2).
Then for any x ∈ [0, 1]

|(f1 + f2)(x)− (g1 + g2)(x)| ≤ |f1(x)− g1(x)|+ |f2(x)− g2(x)|.

Now if the left hand side is bigger than ε than one of the terms on the right needs to
be bigger than ε

2
. If δ < ε

2
the set of points x which satisfy the latter can have at most

measure δ + δ < ε. This shows that Uδ(f1) + Uδ(f2) ⊂ Uε(f1 + f2) whenever δ < ε
2

and in particular continuity of the addition map.

To show continuity of the multiplication, let ε > 0, let λ0 be a scalar and let f0 ∈
MF([0, 1]). Fix δ > 0 to be determined later. Assume that λ is a scalar with |λ−λ0| <
δ and that f ∈ Uδ(f0). Then for any x ∈ [0, 1]

|λ0f0(x)− λf(x)| ≤ |λ0||f0(x)− f(x)|+ |λ0 − λ||f(x)|
< |λ0||f0(x)− f(x)|+ δ|f(x)|
≤ (|λ0|+ δ)|f0(x)− f(x)|+ δ|f0(x)|
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As before, if the left hand side is bigger than ε then

|f0(x)− f(x)| > ε
2(|λ0|+δ) or |f0(x)| >

ε

δ

Since f0 is real-valued and measurable, there is a constant M > 0 so that the measure
of the set of points xwith |f(x)| > M is bounded by ε

2
. Assume that δ is small enough

so that M < ε
δ
. Also, if δ is small so that δ < ε

2(|λ0|+δ) we deduce that λf ∈ Uε(λ0f0)
as desired.

4. a) It suffices to show that any neighborhood of 0 of the form U = Nα1,...,αn;ε(0) is
convex, balanced and absorbent. By looking at the maximum of the appearing
seminorms we may assume that U = Nα;ε(0) (see page 293)

For convexity, note that if x0, x1 ∈ U and λ ∈ [0, 1] then by the triangle inequality

‖λx0 + (1− λ)x1‖α ≤ λ‖x0‖α + (1− λ)‖x1‖α < λε+ (1− λ)ε = ε

and so λx0 + (1− λ)x1 ∈ U .

Furthermore, U is balanced as for any x ∈ U and any scalar λ with |λ| ≤ 1 we
have

‖λx‖α = |λ|‖x‖α ≤ ‖x‖α < ε.

To show that U is absorbent, let x ∈ X arbitrary and assume that ‖x‖α 6= 0
(otherwise x ∈ U and we would be done). Then

ε

‖x‖α
x ∈ U.

This concludes the claim.

b) We need to show that addition and multiplication are continuous. For the former,
denote by

a : X ×X → X

the addition map and let U ⊂ X be open. Since it suffices to show continuity
on elements of a basis of the topology, we may assume that U is of the form
U = Nα;ε(y). We need to show that a−1(U) is open. So let (x1, x2) ∈ a−1(U).
For any x′1, x

′
2 with ‖x′1 − x1‖α, ‖x′2 − x2‖α < δ we have

‖x′1 + x′2 − y‖α ≤ ‖x′1 − x1‖α + ‖x1 + x2 − y‖α + ‖x′2 − x2‖α
< 2δ + ‖x1 + x2 − y‖
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If δ > 0 is chosen small so that δ < 1
2
(ε− ‖x1 + x2 − y‖) then

‖x′1 + x′2 − y‖α < ε

which concludes the proof of continuity of the addition map.

For the multiplication map

m : X ×K→ X

where K denotes the ground field we can apply a similar argument. So let (x, λ) ∈
X × K and consider the ε-neighborhood for some seminorm α. Let (x′, λ′) be a
further point with ‖x′ − x‖α < δ and |λ− λ′| < δ for some δ ∈ (0, 1). Then

‖λ′x′ − λx‖α ≤ |λ′ − λ|‖x′‖α + |λ|‖x′ − x‖α < δ(‖x′‖α + |λ|)
< δ(‖x‖α + 1 + |λ|)

which is < ε if δ is small enough.

5. Let us note that S (Rd) is a locally convex vector space as any non-zero function f ∈
S (Rd) satisfies ‖f‖∞ > 0. Also, the topology is by definition induced by countably
many seminorms as Nd

0 is countable.

It remains to show that S (Rd) equipped with the metric

d(f, g) =
∞∑
n=1

2−n
‖xϕ1(n)∂ϕ2(n)(f − g)‖∞

1 + ‖xϕ1(n)∂ϕ2(n)(f − g)‖∞

is complete where ϕ : N → (Nd
0)

2 is a bijection. One can check that a sequence in
S (Rd) is a (Cauchy-) sequence if and only if it is a (Cauchy-) sequence with respect
to every seminorm – see for instance Exercise 8.66 and Sheet 0. To show that S (Rd)
is complete, let (fn)n be a Cauchy sequence which means by the above that for all
α, β

‖xα∂β(fn − fm)‖∞ → 0

when n > m→ 0.

In particular, for any α, β the sequence (xα∂βfn)n in Cb(Rd) is a Cauchy sequence.
But Cb(Rd) is a Banach space (see Example 2.24) and thus there is gα,β ∈ Cb(Rd)
with

xα∂βfn → gα,β

as n→∞ uniformly. Set g := g0,0 ∈ Cb(Rd).
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We claim that gα,β = xα∂βg for any α, β (implicitly we also need to show that g is
smooth). We begin by proving the case α = 0 inductively. Note that for every n and
any h ∈ R

fn(x+ hej) = fn(x) +

∫ h

0

∂ejfn(x+ tej) dt.

By uniform convergence this implies

g(x+ hej) = g(x) +

∫ h

0

g0,ej(x+ tej) dt.

where the right hand side is differentiable in h with derivative g0,ej . Applying the
above with derivatives of fn instead of fn itself one can proceed to show that all
partial derivatives of g exist and that ∂βg = g0,β for all β. We now only need to show
that gα,β(x) = xαg0,β(x). This follows from the pointwise (!) convergence of xα∂βfn
to either sides.

To conclude we have shown that g is smooth and that ‖xα∂βg‖∞ = ‖gα,β‖∞ <∞ for
all α, β and therefore g ∈ S (Rd). It also follows directly from the construction that g
is the limit of the sequence (fn)n in the locally convex topology.

6. Let (fn)n be a sequence in Cc(U) and let us begin with the simpler claim on the
sheet. So assume that there is a compact set K ⊂ U with supp(fn) ⊂ K for all n
and a function f ∈ Cc(U) with the property supp(f) ⊂ K as well as fn|K → f |K
for n → ∞ uniformly. By definition of the topology on Cc(U) from the lecture (see
Example 8.63(4)) we need to show that for any arbitrary F ∈ C(U) we have fnF →
fF uniformly. But

sup
x∈U
|fn(x)F (x)− f(x)F (x)| = sup

x∈K
|fn(x)F (x)− f(x)F (x)|

≤ ‖F‖K,∞‖fn − f‖K,∞ → 0

as n→∞ as desired.

For the converse direction let fn → f ∈ Cc(U) in the topology on Cc(U). Assume
by contradiction that there is no compact set K ⊂ U as above. Since f has compact
support, the union of the supports of the fn’s has to be non-compact. We can reword
this in the following way: by passing to a subsequence (fnk

)k of (fn)n we may find
a sequence of points (xk)k in U with fnk

(xk) 6= 0 and with rk = d(xnk
, ∂U) → 0.

By passing to a further subsequence we may also suppose that r1 > r2 > r3 > . . .
and that xk is not contained in the support of f` for any ` < k. By applying Urysohn’s
lemma for every k ≥ 2 to

Ak = {x : d(x, ∂U) ≤ rk+1} ∪
⋃
`<k

supp(f`)
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and the point xk we find a continuous function gk ∈ Cc(U) with gk(xk) = 1 and
gk|Ak

= 0. Define

F =
∞∑
k=2

k
|fnk

(xk)|
gk

which is an element of C(U) as the sum is finite at every point. For this F we have

‖fnk
− fnk−1

‖F ≥ ‖(fnk
− fnk−1

) |Ak
‖F = ‖fnk

|Ak
‖F ≥ |fnk

(xk)||F (xk)| = k.

Thus, the sequence (fn) cannot converge.
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