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1. We need to show that the graph of ∇

G =
{
(f,∂1f, . . . ,∂df) : f ∈ H1(Td)

}
⊂ H1(Td)× L2(Td)d

is closed. So let (fk)k be a sequence in H1(Td) such that

fk → g ∈ H1(Td)
(∂1fk, . . . ,∂dfk)→ (g1, . . . , gk) ∈ L2(Td)d

as k → ∞. Recall that we interpret H1(Td) as a subspace of L2(Td) (as a function
determines its weak derivatives) but in fact defined the Sobolov space H1(Td) as a
closure in L2(Td)d. More precisely, g (as well as fk) as an element of H1(Td) should
be viewed as a tuple

(g,∂1g, . . . ,∂dg)

where by Lemma 5.2, ∂1g, . . . ,∂dg are uniquely determined by By definition of the
Sobolev space, fk → g ∈ H1(Td) means that

(fk,∂1fk, . . . ,∂dfk)→ (g,∂1g, . . . ,∂dg)

as k →∞ in L2. This shows that ∂1g = g1, . . . , ∂dg = gd and hence

(g, g1, . . . , gd) = (g,∂1g, . . . ,∂dg) ∈ G

as claimed.

2. Let us first note that the formula∫
Td

ψ(x)∂αf(x) dx = (−1)‖α‖1
∫
Td

∂αψ(x)f(x) dx (1)

holds by partial integration for any f ∈ C∞(Td) and ψ ∈ C∞(Td).
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• Assume that f ∈ Hk(Td) and denote by (fα)‖α‖1≤k the corresponding tuple of
functions in L2(Td). By definition, there exists a sequence of functions gk ∈
C∞(Td) so that ∂αgk → fα in L2 as k → ∞ for any α. Now note that the
left-hand side of (1) when applied to gk must converge to∫

Td

ψ(x)fα(x) dx.

This is in essence a consequence of the Cauchy-Schwarz inequality. Applying
the same reasoning to the right-hand side we obtain∫

Td

ψ(x)fα(x) dx = (−1)‖α‖1
∫
Td

∂αψ(x)f(x) dx

for any ψ ∈ C∞(Td). Since fα ∈ L2(Td) we have thus found the α-weak deriva-
tive of f .
• Now suppose that all α-weak derivatives for ‖α‖1 ≤ k exist and denote them by
fα. Let us compute the Fourier series of fα: Applying the definition of the weak
derivative to ψ = χ−n for n ∈ Zd we obtain that

an(fα) =

∫
Td

χ−n(x)fα(x) dx = (−1)‖α‖1
∫
Td

∂αχ−n(x)f(x) dx.

Now note that

∂αχ−n(x) = (2πi)‖α‖1(−n1)
α1 · · · (−nd)αdχ−n(x)

= (2πi)‖α‖1(−1)‖α‖1nαχ−n(x)

and so

an(fα) = (2πi)‖α‖1nαan(f).

Let gN =
∑N

n=−N an(f)χn. Since fα ∈ L2(Td) and the Fourier series of fα has
the above shape, ∂αgN → fα in L2 for any α with ‖α‖1 ≤ k. This shows that
f ∈ Hk(Td) as desired.

3. To fix some notation, let us denote by xi, 0 ≤ i ≤ n, the points where the derivative
f ′ does not exist. To simplify notational matters a bit, let us also assume that x0 = 0 is
one of these points (this is just throwing away information). We view f and all other
functions on T below as functions on [0, 1] (with periodicity of course).

a) Let ψ ∈ C∞(T) and fix a closed interval [a, b] ⊂ (xi−1, xi) for some i ≥ 1. Then
by the fundamental theorem of calculus∫ b

a

ψ(x)f ′(x) dx = [ψ(x)f(x)]ba −
∫ b

a

ψ′(x)f(x) dx

= ψ(b)f(b)− ψ(a)f(a)−
∫ b

a

ψ′(x)f(x) dx.
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Since f is continuous (also at the points xi) the limit of the right-hand side for
a→ xi−1 and b→ xi exists and so∫ xi

xi−1

ψ(x)f ′(x) dx = ψ(xi)f(xi)− ψ(xi−1)f(xi−1)−
∫ xi

xi−1

ψ′(x)f(x) dx.

(The left-hand side can be viewed as a Lebesgue integral or a improper Riemann
integral.) Summing over i we therefore obtain∫ 1

0

ψ(x)f ′(x) dx =
n∑
i=1

ψ(xi)f(xi)− ψ(xi−1)f(xi−1)−
∫ 1

0

ψ′(x)f(x) dx

= ψ(1)f(1)− ψ(0)f(0)−
∫ 1

0

ψ′(x)f(x) dx

= −
∫ 1

0

ψ′(x)f(x) dx

using periodicity. This shows the claim in a).

b) By a) and Exercise 2 it suffices to show that f ′ ∈ L2(T). For this, it suffices to
show that f ′|[xi−1,xi] for i ≥ 1 is in L2. However, this follows directly from the
fact that f ′|[xi−1,xi] is continuous as the the one-sided limits at the endpoints are
assumed to exist.

4. Assume first that f ∈ H1(T). For the converse we will apply the same strategy as in
Exercise 3. As f ∈ H1(T) there exists a weak derivative g ∈ L2(T) as in Exercise 2.
We first claim that g(x) = f ′(x) almost everywhere. Here, the derivative of f is
defined i.e. at points x 6= 0. Let ψ ∈ C∞(T) be such that supp(ψ) ⊂ (0, 1). Then by
partial integration∫

T
ψ(x)f ′(x) dx = ψ(1)− ψ(0)−

∫
T
ψ′(x)f(x) dx = −

∫
T
ψ′(x)f(x) dx

where the left-hand side makes sense by the assumption on the support of ψ. Combi-
ning this with the definition of the weak derivative we see that∫

T
ψ(x)(f ′(x)− g(x)) dx = 0

Since the function ψ as above are dense in L2(T), this shows that f ′ = g almost
everywhere. In explicit formulas,

f ′(x) = κxκ−1
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for x ∈ (0, δ). Therefore,

∞ > ‖f ′‖2L2 ≥ κ2

∫ δ

0

x2κ−2 dx.

and so the latter integral exists. By explicit integration, this is the case if and only if
2κ − 2 > −1 i.e. if and only if κ > 1

2
.

Now conversely assume that κ > 1
2
. Then f ′ defines an L2-function (essentially by the

argument just given) as it is in L2 on each of the intervals [0, δ], [δ, 1−δ] and [1−δ, 1].
It remains to show that f ′ is indeed the weak derivative. As before, one immediately
checks by partial integration that∫

T
ψ(x)f ′(x) dx = −

∫
T
ψ′(x)f(x) dx

for all ψ ∈ C∞(T) with supp(ψ) ⊂ (0, 1). It remains to settle the case where ψ(0) 6=
0. By an Urysohn-type of argument (or rather a partition of unity) we may assume that
supp(ψ) ∩ [δ, 1− δ] = ∅. Therefore (viewing ψ and f as functions on (−δ, δ)),∫ δ

−δ
ψ(x)f ′(x) dx =

∫ δ

0

ψ(x)f ′(x) dx = lim
a↘0

∫ δ

a

ψ(x)f ′(x) dx

= − lim
a↘0

∫ δ

a

ψ′(x)f(x) dx = −
∫ δ

0

ψ′(x)f(x) dx

= −
∫ δ

−δ
ψ′(x)f(x) dx

where we used the fact that f vanishes identically on the left of 0 and where the first
limit exists as the second one exists. This concludes the exercise.

5. a) Let x, y ∈ [0, 1) and assume without loss of generality that x < y and that the
absolute value |y − x| is indeed the distance (otherwise one can work in the
interval [−1

2
, 1
2
]. We estimate using the fundamental theorem of calculus

|f(y)− f(x)| ≤
∫ y

x

|f ′(t)| dt =
∫
T
1[x,y](t)|f ′(t)| dt ≤ ‖1[x,y]‖L2‖f ′‖L2

by the Cauchy-Schwarz inequality. Now note that

‖1[x,y]‖2L2 =

∫ y

x

dt = y − x = |y − x|.

b) By part a) we have

sup
x,y∈T

|f(y)− f(x)|
|y − x| 12

≤ ‖f ′‖L2 ≤ ‖f‖H1
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for all f ∈ C∞(T). Also, by the Sobolev embeddings theorem

‖f‖∞ �
√
‖f‖2L2 + ‖f ′‖L2

Therefore, the inclusion operator C∞(T)→ C0, 1
2 (T) is bounded when C∞(T) is

equipped with the H1(T)-norm. Since C∞(T) ⊂ H1(T) is dense, the inclusion
operator extends uniquely to the completion H1(T).

c) The argument here is exactly the same as in the proof of Theorem 5.6.

6. a) Notice that the closure of the image of the unit ball in C(Td) contains the charac-
ters χn for n ∈ Zd. The set of characters certainly does not have compact closure
as by orthogonality for any m 6= n

‖χn − χm‖L2 =
√
2.

b) Let U ⊂ Rd be bounded and open. Let fn ∈ Ck+1
b (U) ⊂ Ck

b (U) for every n ∈ N
define a sequence with ‖fn‖Ck+1

b (U) ≤ 1. The norm we consider on the space
Ck
b (U) here is given by

‖f‖Ck
b (U) = max

‖α‖1≤k
‖∂αf‖∞

for f ∈ Ck
b (U). Note that this is just a convenient choice and any other, similarly

defined, norm would also do.

Fix some α ∈ Nd
0 with ‖α‖1 ≤ k. We claim that the sequence (∂αfn)n contains

a Cauchy-sequence in Cb(U) and would like to invoke the theorem of Arzela-
Ascoli for this. Though this is not the kind of space we may Arzela-Ascoli as
formulated in Theorem 2.38 to (that version applies to C(X) where X is a com-
pact metric space) the proof applies verbatim – see also Sheet 3. We need to show
that {∂αfn : n ∈ N} is equicontinuous at every point. So let x ∈ U and y ∈ U be
such that the straight line from x to y is contained in U . Then by the fundamental
theorem of calculus

∂αf(y)− ∂αf(y) =
∫ 1

0

d∑
i=1

∂i∂αf((1− t)x+ ty)(xi − yi) dt

and so

|∂αf(y)− ∂αf(y)| � ‖f‖Ck+1
b (U)‖x− y‖

where the implicit constant is absolute (i.e. does not depend on anything). This
shows equicontinuity and thus (∂αfn)n contains a Cauchy-sequence in Cb(U).

5



Since we are only considering finitely many α’s and α above was arbitrary we
may find a subsequence of (fn)n in Ck

b (U) which is Cauchy. This proves the
claim.

It remains to show that claim about U = R. Let f ∈ C∞c (R) be non-trivial with
compact support in (0, 1) and so that ‖f‖Ck+1

b (R)) ≤ 1. Then set for any ` ∈ N

f` : x ∈ R 7→ f(x− `).

Note that the support of f` is contained in (`, ` + 1) by definition. We may thus
conclude that

‖f`1 − f`2‖∞ = ‖f‖∞ > 0.

Thus, no subsequence of (f`)` can be a Cauchy-sequence in Ck
b (R). This shows

the remaining claim.

c) Define K to be the closure of the image of the unit ball in H1(T) inside L2(T).
Since L2(T) is complete and K is closed, K is complete. We shall show that K
is totally bounded and begin by proving that elements of K have uniformly small
tails. Let f ∈ K be in the image of the unit ball of H1(T) and let f ′ be the weak
derivative of f . Then by Lemma 5.2,∑

n∈Z

n2|an(f)|2 � ‖f ′‖L2 ≤ 1.

where an(f) denotes the n-th Fourier coefficient. For any N ∈ N we then have∑
|n|≥N

|an(f)|2 = 1
N2

∑
|n|≥N

N2|an(f)|2 ≤ 1
N2

∑
|n|≥N

n2|an(f)|2 �
1

N2

where the implicit constant is the same as above and in particular does not depend
on N . By continuity the inequality also holds for any other f ∈ K.

We now prove that K is totally bounded. So let ε > 0 and let N ∈ N be small
enough so that ∑

|n|≥N

|an(f)|2 ≤ ε2

4

Denote by

K ′ =
{
f ∈ K : f =

∑
|n|≤N

an(f)χn

}
which is a closed, bounded subset of a finite-dimensional space and thus compact.
We may hence choose a finite subset A ⊂ K ′ so that for any f ∈ K ′ there is
a ∈ A with ‖f − a‖2 < ε

2
.
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Let f ∈ K be arbitrary, set f̃ =
∑
|n|≤N an(f)χn and choose a ∈ A with the

property ‖f̃ − a‖2 < ε
2
. Then

‖f − a‖2 ≤ ‖f − f̃‖2 + ‖f̃ − a‖2 <

∑
|n|≥N

|an(f)|2
 1

2

+ ε
2
≤ ε

In other words, the balls of radius ε > 0 around the points in the finite setA cover
K. Since ε > 0 was arbitrary, K is totally bounded.

7. a) As noted in the hint, we only need to show that a linear combination of compact
operators is compact – see Lemma 6.3. So let λ be a scalar and let L1, L2 ∈ B(X)
be compact. Then

(λL1 + L2)(BX
1 ) ⊂ λL1(BX

1 ) + L2(BX
1 ) ⊂ λL1(BX

1 ) + L2(BX
1 )

= λL1(BX
1 ) + L2(BX

1 )

by continuity of addition and multiplication. By the same continuity, the latter set
is compact and so (λL1 + L2)(BX

1 ) is compact as desired.

b) It follows directly from Lemma 6.7 that K(X) is a closed ideal. In particular, the
Calkin algebra, when equipped with the quotient norm, forms a Banach space. It
remains to show that the quotient norm satisfies the required property of a Banach
algebra. For this, let A1, A2 ∈ B(X) and given ε > 0 choose K1, K2 ∈ K(X)
with

‖A1 +K1‖ ≤ ‖A1 +K(X)‖+ ε, ‖A2 +K2‖ ≤ ‖A2 +K(X)‖+ ε.

To simplify notation set A′1 = A1 +K1 and A′2 = A2 +K2. Then by definition
of the quotient and the norm ‖A′1 +K(X)‖ = ‖A1 +K(X)‖ and similarly for
A′2. Also, A1A2 +K(X) = A′1A

′
2 +K(X). Then

‖A1A2 +K(X)‖ ≤ ‖A′1A′2‖ ≤ ‖A′1‖‖A′2‖
≤ ‖A1 +K(X)‖‖A2 +K(X)‖
+
(
‖A1 +K(X)‖+ ‖A2 +K(X)‖+ ε

)
ε

and as ε > 0 was arbitrary this shows

‖A1A2 +K(X)‖ ≤ ‖A1 +K(X)‖‖A2 +K(X)‖

as desired.

8. a) As proved in the lecture, operators with finite-dimensional range are compact.
Now it suffices to note that all Pn’s are of this shape.
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b) The definition of the strong operator topology is such that Pn → id if and only if
Pn(x) → x for all x ∈ `2(N) as n → ∞. See also Exercise 8.57. But now note
that for any x ∈ `2(N)

‖x− Pn(x)‖2`2 =
∞∑

k=n+1

|xk|2 → 0

as n → ∞ by absolute convergence. Thus, Pn → id in the strong operator
topology.

The identity operator on any infinite-dimensional Banach space X is not com-
pact. Indeed, id(BX

1 ) = BX
1 is not compact by Proposition 2.35.

9. For simplicity of the exposition, let us first assume that T = idX −K is injective. We
thus have a bijective bounded operator T : X → T (X) and so in order to prove that
T (X) is closed we may also prove that T−1 is bounded. In other words, if there is a
constant C > 0 such that

‖x‖ ≤ C‖Tx‖ (2)

for all x ∈ X then any Cauchy-sequence Txn = xn −Kxn in T (X) has the property
that xn is a Cauchy-sequence in X . Since X is a Banach space, the limit x exists.
It satisfies Txn → Tx then as required showing that T (X) is complete and hence
closed. So suppose that such a constant C does not exist and choose (xn)n in X so
that

‖xn‖ = 1 and 1 > n‖Txn‖.

Thus, Txn = xn−Kxn → 0. ButKxn ∈ K(BX
1 ) whereK(BX

1 ) has compact closure
by choice of K. Thus, there is y ∈ X so that Kxn → y. This implies that

xn = (xn −Kxn) +Kxn → 0 + y = y.

Thus, Kxn → Ky as K is bounded. But since Kxn → y also holds, we have Ky = y
which implies y = 0 by assumption. We also know that ‖xn‖ = 1 for all n which is
impossible as xn → y = 0. This is a contradiction and hence the inequality (2) holds
for some constant C. We already proved that this implies the claim.

We now drop the assumption that T = idX −K is injective and let V be the kernel of
idX −K. Notice that V is finite-dimensional. Indeed, K|V : V → X is compact and
equal to the identity operator, which can only be compact if V is finite-dimensional by
Proposition 2.35. We know from Exercise 6, Sheet 9 that V has a closed complement.
Denote this complement by W . Notice that the image of idX −K restricted to W is
equal to the image of the whole space X under the same map as V is the kernel.
Furthermore, W is a Banach space and K|W is compact. One can therefore apply the
argument from the first part of the exercise to the new injective operator (idX −K)|W
and obtain the claim in the general case.

8



10. a) Recall that the adjoint operator of, say, L ∈ B(H) is characterized uniquely by
the equation

〈Lv,w〉 = 〈v, L∗w〉

for all v, w ∈ H.

Now consider the operator L = aS + bT . We see that for any v, w ∈ H

〈(aS + bT )v, w〉 = 〈aSv + bTv, w〉 = a 〈Sv, w〉+ b 〈Tv, w〉
= a 〈v, S∗w〉+ b 〈v, T ∗w〉 = 〈v, aS∗w〉+

〈
v, bT ∗w

〉
=
〈
v, (aS∗ + bT ∗)w

〉
and so the claim follows from the above uniqueness statement.

Similarly, we compute for L = ST and v, w ∈ H

〈STv, w〉 = 〈Tv, S∗w〉 = 〈v, T ∗S∗w〉

which concludes part a).

b) We first prove the equality im(T )⊥ = ker(T ∗). So let v ∈ ker(T ∗) and let w ∈
H. Then 〈v, Tw〉 = 〈T ∗v, w〉 = 0 implies that v ∈ im(T )⊥. Conversely, if
v ∈ im(T )⊥ then 〈T ∗v, w〉 = 〈v, Tw〉 = 0 for all w ∈ H implies that T ∗v = 0.

We now prove the equality ker(T )⊥ = im(T ∗) or by taking orthogonal comple-
ments rather the equivalent statement

ker(T ) = im(T ∗)⊥

Replacing T with T ∗ and using that (T ∗)∗ = T , this is in fact the same equality
as the one we already proved.

c) Assume that T is unitary i.e. that T is surjective and that

‖Tv‖2 = 〈Tv, Tv〉 = ‖v‖2.

for all v ∈ H We first claim that 〈Tv, Tw〉 = 〈v, w〉 for all v, w ∈ H. By the
polarization identity (see Exercise 3, Sheet 4)

〈Tv, Tw〉 = 1
4

4∑
k=0

ik‖Tv + ikTw‖ = 1
4

4∑
k=0

ik‖T (v + ikw)‖

= 1
4

4∑
k=0

ik‖v + ikw‖ = 〈v, w〉
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and so this proves the claim. As in a), the equality

〈v, T ∗Tw〉 = 〈Tv, Tw〉 = 〈v, w〉

proves that T ∗T = idH. Since this shows that T−1 = T ∗ as T is surjective, we
also have TT ∗ = idH.

Let us turn to the converse and assume that T ∗T = TT ∗ = idH. By the latter
equality, T must be surjective. Furthermore, we have for all v ∈ H

〈v, v〉 = 〈v, T ∗Tv〉 = 〈Tv, Tv〉

which finishes the exercise.

11. We do not give the statement right away, but rather discover it while using all the
theory we can. Let us apply Theorem 6.27 to the self-adjoint compact operator T2. It
follows there is a sequence λn of non-zero distinct eigenvalues with λn → 0 so that
we can write

H = H0 ⊕
⊕
n

Hn (3)

where H0 is the kernel of T2 and Hn is the eigenspace of T2 to the eigenvalue λn. By
assumption on T2, the kernel H0 is trivial. Also, it is contained in Theorem 6.27 that
each eigenspaceHn is finite-dimensional.

We claim that the eigenspaces Hn are also invariant under T1. Indeed, if v ∈ Hn then
by commutativity

T2(T1v) = T1T2v = λnT1v

and so T1v ∈ Hn.

Recall that any self-adjoint operator on a finite-dimensional inner product space is
diagonalizable! Applying this for n ∈ N to T1|Hn we find an orthonormal basis Bn of
Hn of eigenvectors of T1. Since T2|Hn is a scalar multiplication map, this orthonormal
basis also consist of eigenvectors of T2. Let v1, v2, . . . , vk, . . . be an enumeration of⋃
n Bn. By Equation 3 this forms an orthonormal basis ofH of eigenvectors for T1, T2

simultaneously. By the spectral theorem as applied above, we have that the eigenvalue
of vk goes to zero as k goes to infinity.

12. Recall from the discussion after the proof of Lemma 2.68 that the functions

sn : x ∈ [0, 1] 7→ sin(πnx)
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for n ∈ N satisfy K(sn) = −1
(πn)2

sn and are therefore eigenvectors of the Hilbert-
Schmidt operator K with eigenvalues µn = −1

(πn)2
. It remains to show that these are all

eigenvalues and that all these eigenvalues have (geometric) multiplicity one.

To achieve this, suppose that f is an eigenvector of K with eigenvalue λ 6= 0. In
particular,Kf = λf . By Lemma 2.68 this is another way of saying that f ∈ C2([0, 1])
with λf ′′ = f and f(0) = f(1) = 0. Thus, since f ′′ = 1

λ
f ∈ C2([0, 1]) we have that

f ∈ C4([0, 1]) and continuing in this fashion, f must be smooth.

Suppose that λ < 0. By uniqueness of solutions to second order ODE’s we must have

f(x) = A sin(
√
|λ|x) +B cos(

√
|λ|x)

for all x ∈ [0, 1]. Since f(1) = 0, B = 0. Since f(1) = 0,
√
|λ| ∈ πZ and so√

|λ| = πn for some n ∈ N. Thus, f(x) = A sin(πnx) as desired.

Suppose that λ > 0. Then

f(x) = A sinh(
√
λx) +B cosh(

√
λx)

for all x and as f(0) = 0 we have B = 0. Since sinh′ = cosh is positive, sinh
is strictly increasing and therefore f(1) > f(0) = 0 so there is no eigenvector to
positive eigenvalue.

Remark: An alternative approach uses Fourier series on the interval. For a smooth
function (such as an eigenfunction) the Fourier series is absolutely convergent. If an
eigenfunction apart linearly independent from the sn would exist, it would need to be
orthogonal to these. But these functions form a orthogonal basis of L2 (see Exerci-
se 3.55).

It remains to compute the kernel of K. So suppose that Kf = 0. The proof of Lem-
ma 2.68 then shows that (taking the second derivative of Kf ) f = 0 so the kernel is
trivial.
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