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Solution 12.1

(a) Since X0 = a ∈ [0, 1], from the assumption that P [Xn+1 = Xn

2 or Xn+1 = 1+Xn

2 ] = 1 we can
use induction argument to conclude that 0 ≤ Xn ≤ 1 for all n, Hence each Xn is integrable.
Moreover, it holds that

E[Xn+1|Fn]

= Xn

2 P [Xn+1 = Xn

2 |Fn] + 1 +Xn

2 P [Xn+1 = 1 +Xn

2 |Fn]

= Xn

2 (1−Xn) + 1 +Xn

2 Xn = Xn.

Thus Xn is a non-negative martingale, and by the Martingale Convergence Theorem, Xn

converge to a random variable X∞ a.s. Besides, we have that Xn is bounded by 1, then the
convergence holds also in Lp for all p ≥ 1 due to the Dominated Convergence Theorem.

(b) We have that

E[(Xn+1 −Xn)2] = E[E[(Xn+1 −Xn)2|Fn]] (1)

= E[E[(X2
n+1 − 2Xn+1Xn +X2

n|Fn]].

It is easy to see that

E[X2
n+1|Fn] =

(
Xn

2

)2
P [Xn+1 = Xn

2 |Fn] +
(

1 +Xn

2

)2
P [Xn+1 = 1 +Xn

2 |Fn]

=
(
Xn

2

)2
(1−Xn) +

(
1 +Xn

2

)2
Xn = Xn

4 (1 + 3Xn).

Plugging this in (1) we have that

E[E[(Xn+1 −Xn)2|Fn]] = E[Xn

4 (1 + 3Xn)− 2X2
n +X2

n] = 1
4E[Xn(1−Xn)].

Solution 12.2
(a) Since Xn

n→∞−−−−→ X in distribution, we know by Proposition 2.7, p. 50 of the lecture notes
that one can construct random variables Yn, n ∈ N, and Y on a common probability space
(Ω′,A′, P ′), such that Yn

d= Xn, for all n ∈ N, Y d= X, and Yn → Y , P ′-almost surely. It is
easy to verify that the family {Yn}n∈N is also uniformly integrable, since

lim
M→∞

sup
n∈N

EP ′

[
|Yn|1{|Yn|>M}

]
Yn

d=Xn= lim
M→∞

sup
n∈N

EP

[
|Xn|1{|Xn|>M}

]
= 0.

So by (3.6.18)-(3.6.19), p. 112 of the lecture notes, we have

EP ′ [Yn] n→∞−−−−→ EP ′ [Y ],

and the result follows since EP [Xn] = EP ′ [Yn], for all n ∈ N, and EP [X] = EP ′ [Y ].
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(b) Since convergence in probability implies convergence in distribution, by using Fatou’s Lemma,
we can find an M large enough such that

EP [|X|1{|X|>M}] = EP ′ [|Y |1{|Y |>M}]
Fatou
≤ lim inf EP ′

[
|Yn|1{|Yn|≥M}

]
≤ ε. (2)

Moreover, by convergence in probability, there exists n0 ≥ 0 such that, for all n ≥ n0, we have

P
[
|Xn −X| ≥ ε︸ ︷︷ ︸

An

]
<

ε

M
.

Hence, for all n ≥ n0, by (3.6.21) in lecture notes it holds that

EP [|Xn −X|] ≤ EP
[
|Xn −X|1{|Xn|≤M,|X|≤M}

]
+ 3EP

[
|Xn|1{|Xn|>M}

]︸ ︷︷ ︸
≤ε

+3EP
[
|X|1{|X|>M}

]︸ ︷︷ ︸
≤ε

≤ EP
[
|Xn −X|1{|Xn|≤M,|X|≤M}︸ ︷︷ ︸

≤2M

1An

]
+ EP

[
|Xn −X|1{|Xn|≤M,|X|≤M}︸ ︷︷ ︸

≤ε

1Ac
n

]
+ 6ε

≤ 2MP [An] + 7ε ≤ 9ε.

Therefore, Xn converges to X in L1.

Solution 12.3 Let Fn = σ(X0, . . . , Xn). We need to check for all n, k ≥ 0, f : Ek+1 → R bounded
and measurable, there exists a (measurable) function h : E → R (only depending on f) such that
for all n ≥ 0,

E[f(Xn, · · · , Xn+k)|Fn] = h(Xn)
(in particular, E[f(Xn, · · · , Xn+k)|Fn] is σ(Xn) measurable). This result illustrates the “time
homogeneity”. We will prove it for the simple case where f(x0, x1, · · · , xk) = 1B(xk) where B ⊂ E
and k = 1, the general case can be derived similarly by using the measure–theoretic induction (cf.
the proof of Proposition 1.13).

Indeed, it holds that

E[1{Xn+1∈B}|Fn] = E[1{Φ(Xn,Yn+1)∈B}|Fn] = ΨB(Xn), (3)

where

ΨB(x) = E[1{Φ(x,Yn+1)∈B}] = P [Φ(x, Yn+1) ∈ B],
and the last equality in (3) follows from the fact that Yn+1 is independent of Fn = σ(X0, . . . , Xn),
and that Xn is Fn-measurable. (It is an easy exercise to check that

E[1{Φ(Xn,Yn+1)∈B}|Fn]1{Xn=x} = P [Φ(x, Yn+1) ∈ B]1{Xn=x}

for all x ∈ E). This shows that (Xn)n≥0 is a time homogenous Markov chain and the transition
matrix is given through

Q(x, y) = Px[X1 = y] = Ex

[
E[1{X1=y}|F0]

]
= P [Φ(x, Y1) = y],

for Px[X0 = x] = 1 (we may take Px = P [·|X0 = x]). Here we remark that the time homogeneity
of (Xn)n≥0 follows from the above observation that for all n ≥ 0, x, y ∈ E,

P [Xn+1 = y|Xn = x] = P [X1 = y|X0 = x] = Q(x, y).
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