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Which Exercise Class to Visit?

We would like to distribute students more or less evenly to the available
exercise classes. Therefore

• Surnames starting with A–G −→ Friday 8:00-10:00 HG D 7.1;

• Surnames starting with H–O −→ Friday 8:00-10:00 LFW E 13;

• Surnames starting with P–Z −→ Friday 10:00-12:00 LFW E 13.

Try to visit the exercise class to which you are assigned, if possible.
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http://www.mapsearch.ethz.ch/map.do?gebaeudeMap=HG&farbcode=c010&lang=en
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=HG&geschoss=D&raumNr=7.1&lang=en
http://www.mapsearch.ethz.ch/map.do?gebaeudeMap=LFW&farbcode=c010&lang=en
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=LFW&geschoss=E&raumNr=13&lang=en
http://www.mapsearch.ethz.ch/map.do?gebaeudeMap=LFW&farbcode=c010&lang=en
http://www.rauminfo.ethz.ch/Rauminfo/grundrissplan.gif?gebaeude=LFW&geschoss=E&raumNr=13&lang=en


Organizational Notes I

• The exam will cover all material discussed during the lectures and
during the exercise classes. Details will be reviewed towards the end of
the semester.

• Old exams are available here, but you are highly discouraged from
preparing from the old exams only.

• Presence on lectures and exercise classes is not obligatory but is highly
recommended.

• Each class will have an exercise sheet, which will be uploaded to the
course homepage on Tuesday before the corresponding class.
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https://people.math.ethz.ch/~gruppe3/archive
https://metaphor.ethz.ch/x/2017/hs/401-3913-01L/


Organizational Notes II

• Your solutions need to be submitted to your assistant’s box in front of
HG G 53.2 by Tuesday 18:00 (in the week after the corresponding
exercise).

• Handing in your solutions is not obligatory, but being able to solve the
exercises independently goes a long way towards a good exam
performance.

• The model solutions to the exercise sheets will be uploaded to the
course homepage on Tuesdays as well (after your submission deadline).

• Regular question times (also called “Präsenz”) will be held on Mondays
and Thursdays, 12:00-13:00 in HG G 32.6.
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https://metaphor.ethz.ch/x/2018/hs/401-3913-01L/


Learning Resources I

The lecture will closely follow the lecture notes that can be purchased
before the beginning of the next lecture on September 24. We will also be
selling these lecture notes during Präsenz hours. Other optional and
additional sources are

• Stochastic Finance: An Introduction in Discrete Time, H. Föllmer, A.
Schied, de Gruyter, 2011,

• Introduction to Stochastic Calculus Applied to Finance, D. Lamberton, B.
Lapeyre, Chapman-Hall, 2008.
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https://www.degruyter.com/viewbooktoc/product/468290?rskey=75zo8b&result=2
https://www.crcpress.com/Introductio n-to-Stochastic-Calculus-Applied-to-Finance-Second-Edition/Lamberton-Lapeyre/p/book/9781584886266


Learning Resources II

Especially for those who do not have the necessary background, it is also
recommended to consult

• Probability Essentials, J. Jacod and P. Protter, Springer, 2003.

Another possibility is to also purchase the English version of the script used
for the ETH course on Probability Theory by prof. Sznitman. This script will
also be sold during Präsenz hours.
Another good resource is Mathematics Stack Exchange.
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http://www.springer.com/gp/book/9783540438717
https://math.stackexchange.com/


Sigma Algebra

Definition 1 (σ-algebra)

Let Ω ̸= ∅ be a set and let 2Ω denote the power set (the set of all subsets) of
Ω. F ⊂ 2Ω is called a σ-algebra if it satisfies the following:
1. Ω ∈ F ,
2. A ∈ F =⇒ Ac = Ω \ A ∈ F ,

3. An ∈ F ,n ∈ N =⇒
∪∞
n=1 An ∈ F .

• The elements of F are called measurable sets or events.
• The “sigma” refers to the “countable” expressed in 3.
• De Morgan laws =⇒ closedness under countable intersections.
• Why do we need σ-algebras and not always work with 2Ω? We run into
issues with defining natural measures on uncountable sets. Using
σ-algebras of nice sets is enough and fixes the problem.
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Probability Measure

Definition 2 (Probability measure)
A probability measure on a measurable space (Ω,F) is a mapping
P : F → [0, 1] such that P[Ω] = 1 and P is σ-additive, that is

P
[

∞∪
n=1

An

]
=

∞∑
n=1

P[An],

for An ∈ F ,n ∈ N such that Ak ∩ An = ∅ if k ̸= n. The triplet (Ω,F , P) is called
a probability space.

The most basic properties:

• P[ ∅ ] = 0,
• For A ∈ F , P[Ac] = 1− P[A],
• For A,B ∈ F , A ⊆ B, P[A] ≤ P[B],
• For A,B ∈ F , P[A ∪ B] = P[A] + P[B]− P[A ∩ B]
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Random Variable

Definition 3 (Random variable)
Let (Ω,F , P) be a probability space. A map X : Ω → R is called a
(real-valued) random variable if

X−1(B) = {X ∈ B} = {ω ∈ Ω | X(ω) ∈ B} ∈ F

for all B ∈ B(R).

• B(R) denotes the Borel σ-algebra on R, i.e the smallest σ-algebra
containing all open sets in R.

• In words: A map is a random variable if the pre-images of (Borel)
measurable sets on R are measurable sets.

• Note that this definition of pre-image works for any map, not just
one-to-one maps.

• {X ∈ B} and X−1(B) is just a notation for the set {ω ∈ Ω | X(ω) ∈ B}.
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Distribution of a Random Variable

Definition 4 (Distribution of a random variable)
Distribution or law of a random variable X : Ω → R defined on a probability
space (Ω,F , P) is a measure PX defined by

PX[B] = P[X−1(B)] = P[X ∈ B] = P[{ω ∈ Ω | X(ω) ∈ B}]

for all B ∈ B(R).

Definition 5 (Distribution function)
(Cumulative) distribution function (cdf) of a real-valued random variable
X : Ω → R is a function defined by

FX(x) = P[X ≤ x] = PX
[
(−∞, x]

]
.
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A More Specific Example I

Example 6

Let Ω = {1, 2, 3}, F = 2Ω =
{
{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},Ω, ∅}

}
and

P[ω] = 1/3 for ω = 1, 2, 3. The measure on the atoms determines the
measure on all the other sets since they can be written as a finite union of
the (disjoint) atoms. Let X : Ω → R be defined by X (ω) = 1 for all ω ∈ Ω.
Then we have for B ∈ B(R) that

PX[B] = P[X−1(B)] =
{
P[Ω] = 1 if {1} ⊆ B,
P[ ∅ ] = 0 otherwise.

One can see from the above example that we could have set F = {Ω, ∅} and
X would still be a random variable (a measurable map). Such a choice
would, however, make it impossible to define other non-degenerate random
variables on the same probability space.
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A More Specific Example II

Example 7
Let Ω = (0, 1),F = B

(
(0, 1)

)
and P[A] = L(A) for all A ∈ F , where L denotes

the Lebesgue measure. Define for a λ > 0 a random variable X : Ω → R by

X(ω) = 1
λ
log

(
1

1− ω

)
.

We then have that

FX(x) = P [X ≤ x] = P
[
X−1((−∞, x]

)]
= P

[
1
λ
log

(
1

1− ω

)
≤ x

]
= P

[
1− ω ≥ e−λx

]
= P[ω ≤ 1− e−λx] = L

[
(0, 1− e−λx]

]
= 1− e−λx.

This can be recognized as the cdf of the Exp(λ) distribution.
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Sigma Algebra Generated by a Random Variable

The σ-algebra generated by a random variable X is the smallest σ-algebra
such that X is measurable with respect to that σ-algebra. More formally we
can define it as follows.

Definition 8 (σ-algebra generated by a collection of sets)
Let Ω be a non-empty set and A a collection of subsets of Ω. The σ-algebra
generated by A, denoted σ(A) is the smallest σ-algebra containing A, that is

σ(A) = {B ⊆ Ω |B ∈ F for any σ-algebra F on Ω with A ⊆ F}.

Definition 9 (σ-algebra generated by a random variable)
The σ-algebra generated by a random variable X : Ω → R is the σ-algebra
generated by the the collection of sets of the form {X ∈ B},B ∈ B(R).
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Almost Surely

Definition 10 (Almost surely)
Let (Ω,F , P) be a probability space. We say that an event B ∈ F happens
P-almost surely if P[B] = 1.

• This equivalently means that P[Bc] = 0, i.e. the probability of B not
happening is zero.

• We often use the abbreviation P-a.s., or simply a.s. when the probability
measure in question is clear from the context.

• For instance, if one says that X a.s.
= Y it means that

P
[
{ω ∈ Ω | X(ω) = Y(ω)}

]
= 1. Similarly for other properties.

• Saying that X = Y is thus stronger than saying that X a.s.
= Y, since X = Y

really means that X(ω) = Y(ω) pointwise for every ω ∈ Ω.
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Expectation

Definition 11 (Expectation)
The expectation of a random variable X on (Ω,F , P) with

∫
Ω
|X(ω)|dP(ω) < ∞

is defined as
E[X] =

∫
Ω

X(ω)dP(ω).

• The expectation is just a (Lebesgue) integral.
• The set of all random variables X with

∫
Ω
|X|pdP < ∞, p ≥ 1 will be

denoted Lp(P) (or Lp if the P in question is clear from the context).
• Useful properties:

• For a ∈ R, E[a] = a.
• For a ∈ R and r.v.’s X, Y ∈ L1(P), E[aX+ Y] = aE[X] + E[Y].
• For B ∈ B(R), P[X ∈ B] = E[1{X∈B}].
• Jensen’s inequality: for a convex function φ : R → R and X, φ(X) ∈ L1(P) we
have that φ(E[X]) ≤ E[φ(X)].
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Monotone Convergence Theorem

Theorem 12 (Monotone convergence theorem)
Let Xn be a non-decreasing sequence of non-negative random variables with
Xn P-a.s.−→ X, then

lim
n→∞

E[Xn] = E[X].

Note that we do not have any integrability assumption in here. This is
because we assume that Xn ≥ 0 for all n ∈ N and there are no problems
with defining the integral for any non-negative measurable function
(random variable).
Why is it useful?
• Obviously can be used to prove some asymptotic behavior of a
sequence of random variables.

• Since P[B] = E[1B] we can often compute P[B] by computing simpler
P[Bn] for a sequence of sets such that Bn ⊆ Bn+1 for all n ∈ N and using
the fact that 1Bn forms an non-decreasing sequence of non-negative
functions.
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Dominated Convergence Theorem

Theorem 13 (Dominated convergence theorem)

Let X, Y and Xn for n ∈ N be random variables with Y ∈ L1, Xn P-a.s.−→ X and
|Xn| ≤ Y for all n ∈ N, then

lim
n→∞

E[Xn] = E[X].

• Notice the integrability condition due to allowing for random variables
that are not necessarily non-negative.

• The theorem has applications similar to monotone convergence
theorem, but allows for a wider class of sequences.
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Conditional Expectation I

Conditional expectation is one of the most important concepts in the
course. This is because relevant concepts such as martingales (will be
discussed later) are defined using the notion of conditional expectation.
Prices (and price processes) of derivative products can be conveniently
expressed using conditional expectation as well, which we will see later.

Definition 14 (Conditional expectation)
Let (Ω,F , P) be a probability space and fix a σ-algebra G ⊆ F . A conditional
expectation of a random variable X given G is a random variable Y with the
following two properties:
1. Y is G-measurable (i.e. Y−1(B) ∈ G for all B ∈ B(R)),
2. E[X1A] = E[Y1A] for all A ∈ G.

Any such random variable Y will be denoted E[X | G].
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Conditional Expectation II

• Unlike the classical expectation, the conditional expectation is a
random variable. We sometimes explicitly write E[X | G](ω).

• It can be shown that E[X | G] is the best G-measurable approximation of
(a generally G-non-measurable) random variable X. The word “best” is
always tied to a criterion – in this case, the best random variable E[X | G]
minimizes the distance given by

d(X, Y) := E[(X− Y)2]

between our X and all G-measurable and square-integrable random
variables Y.
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Conditional Expectation III

The most important and the most applicable properties of the conditional
expectation include the following:

• For a ∈ R and r.v.’s X, Y ∈ L1(P), E[aX+ Y | G] = aE[X | G] + E[Y | G].
• E[X | G] = X if X is G-measurable.
• E

[
E[X | G]

]
= E[X].

• Tower property: for a σ-algebra H ⊆ G, E
[
E[X | G] |H

]
= E[X |H].

• Jensen’s inequality: For a convex function φ : R → R and X, φ(X) ∈ L1(P)
we have that φ(E[X | G]) ≤ E[φ(X) | G] P-a.s.

• Monotone convergence theorem: limn→∞ E[Xn | G] = E[X | G] P-a.s. for a
non-decreasing sequence of non-negative random variables with
Xn P-a.s.−→ X.

• Dominated convergence theorem: limn→∞ E[Xn | G] = E[X | G] P-a.s. for a
sequence of random variables with Xn P-a.s.−→ X and |Xn| ≤ Y for a Y ∈ L1(P).
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Stochastic Processes

Definition 15 (Stochastic process)
Let T be an index set. A stochastic process is a collection of random
variables Xt, t ∈ T defined on a common probability space (Ω,F , P).

• In the first part of the lecture will be mostly dealing with the case
T = {0, 1, . . . , T}, T ∈ N and finite Ω, while in the second part we will
mostly have T = [0, T], T ∈ (0,∞) and uncountable Ω.

• There is one an additional view on stochastic processes that we will use
– a collection of sample paths (or a trajectories) of the process indexed
by ω ∈ Ω, i.e.

X(ω, ·) : T → R
t 7→ Xt(ω).
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Filtration

Filtration is the key concept required for formalizing some of the most
important types of behavior of stochastic processes over time.

Definition 16 (Filtration)
Let T ⊆ [0,∞). A filtration F = (Ft)t∈T on a measurable space (Ω,F) is a
family of σ-algebras Ft ⊆ F which is increasing in the sense that Fs ⊆ Ft
for s ≤ t.

• A filtered probability space (Ω,F ,F, P) is simply a probability space
(Ω,F , P) equipped with a filtration F = (Ft)t∈T .

• One can easily show that Ft := σ(Xs, 0 ≤ s ≤ t) forms a filtration. Since
this is the most natural filtration for a probability space where we are
dealing with a single stochastic process Xt, it is also referred to as the
natural filtration for Xt.

21 / 24



Filtration as the Flow of Information

One can often hear that filtration models the evolution of information over
time.

• The richer a σ-algebra is, the more events can be assigned a probability
and are thus observable.

• For instance, if Ω = {1, . . . , 6} and X(ω) = ω corresponds to a value on a
die, then the σ-algebra one needs to use (so that the corresponding r.v.
is measurable) when she is told the precise value thrown on the die
(F = 2Ω) is larger than the σ-algebra she needs to use when she is only
told whether the number is even or odd

(
F̄ =

{
{1, 3, 5}, {2, 4, 6},Ω, ∅

})
.

Larger σ-algebras thus convey more information.
• A filtration F can therefore be interpreted as the evolution of
information over time, and the requirement that Fk ⊆ Fk+1 as
information not being lost over time, which is reasonable.
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Adapted Processes

Definition 17 (Adapted process)
A stochastic process Xt on a filtered probability space (Ω,F , (Ft)t∈T , P) is
adapted to F = (Ft)t∈T if Xt is Ft-measurable for all t ∈ T .

An adapted process simply represents a process whose values can be
observed at time t (regardless of which of the possible values is taken).

Example 18
A good example in the financial context: Online brokerage firms often
provide their clients with data delayed by ϵ unless the clients pay for the
real-time prices. If we denote the real-time prices by Xt and the delayed
prices by Yt, we clearly have that Yt = Xt−ϵ. In this case Xt will not be adapted
to the filtration representing the information that we have available at time t
from the price process that we observe, Ft = σ(Ys, 0 ≤ s ≤ t). However, this
process would of course be adapted to Gt = σ(Xs, 0 ≤ s ≤ t), which is why it
might seem that processes which are not adapted are not natural.
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Predictable Processes in Discrete Time

Definition 19 (Predictable process)
A discrete time stochastic process (Xt)t=0,1,...,T, T ∈ N on a filtered probability
space (Ω,F , (Ft)t=0,1,...,T, P) is predictable with respect to F = (Ft)t=0,1,...,T if
Xt is Ft−1-measurable for all t = 1, . . . T.

• The definition is a bit more delicate for continuous time processes.
• One requires trading strategies to be predictable processes. This is
because in order to be able to take advantage of price movement from
the current time t to the future time t+ 1, one must make an investment
at time t.

• Conveniently, stochastic integral, which, as will be seen later, naturally
represents the gains of a trading strategy, can be defined for
predictable processes in general.
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Thank you for your attention!


