Mathematical Foundations for Finance

Exercise sheet 13

Please hand in your solutions until Tuesday, 18/12/2018, 18:00 into your assistant's box next to HG G 53.2.

Exercise 13.1 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_t)_{t \ge 0}$. Let $M = (M_t)_{t \ge 0}$ be a local (P, \mathbb{F}) -martingale and $W = (W_t)_{t \ge 0}$ a (P, \mathbb{F}) -Brownian motion.

- (a) Let $H = (H_t)_{t \ge 0}$ be in $L^2(M)$. Compute $E\left[\int_0^T H_s dM_s\right]$ and $\operatorname{Var}\left[\int_0^T H_s dM_s\right]$. How do the expressions look for M := W?
- (b) Let H_s := exp(-4s). Show that ∫₀^T H_sdW_s is in fact normally distributed. What are the mean and the variance of this normal distribution? How would the result change if H : ℝ → ℝ were an arbitrary (deterministic) continuous function? Hint 1: Use the dominated convergence theorem for stochastic integrals from page 94 in the lecture notes. Hint 2: If X_n ~ N(μ_n, σ_n²), X_n → X in probability, μ_n → μ and σ_n² → σ² > 0, then X ~ N(μ, σ²).
- (c) By coming up with a counterexample, show that the normality of $\int_0^T H_s dW_s$ from (b) does not hold for an arbitrary continuous $H \in L^2(W)$.

Exercise 13.2 Let T > 0 denote a fixed time horizon and $W = (W_t)_{t \in [0,T]}$ a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the *P*-nullsets in $\sigma(W_s; s \leq T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\widetilde{S}^0 = (\widetilde{S}_t^0)_{t \in [0,T]}$ and the undiscounted stock price process $\widetilde{S}^1 = (\widetilde{S}_t^1)_{t \in [0,T]}$ are given by

$$d\widetilde{S}_t^0 = \widetilde{S}_t^0 r dt \quad \text{and} \quad d\widetilde{S}_t^1 = \widetilde{S}_t^1 \left(\mu dt + \sigma dW_t\right), \tag{1}$$

where $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$ are deterministic.

(a) Prove using Itô's formula that the discounted stock price process $S^1 = \tilde{S}^1 / \tilde{S}^0$ solves

$$dS_t^1 = S_t^1 \left((\mu - r)dt + \sigma dW_t \right).$$
(2)

(b) Prove using Itô's formula that

$$S^{1} = \left(S_{0}^{1} \exp\left(\sigma W_{t} + \left(\mu - r - \frac{1}{2}\sigma^{2}\right)t\right)\right)_{t \in [0,T]}$$

i.e. show that the process $\left(S_0^1 \exp\left(\sigma W_t + \left(\mu - r - \frac{1}{2}\sigma^2\right)t\right)\right)_{t \in [0,T]}$ solves (2).

- (c) Let $L^{\lambda} := -\lambda W$ and $Z^{\lambda} := \mathcal{E}(L^{\lambda})$. Prove that the process $W^{\lambda} := (W_t + \lambda t)_{t \in [0,T]}$ is a Brownian motion under the measure Q_{λ} given by $\frac{dQ_{\lambda}}{dP} := Z_T^{\lambda}$.
- (d) Prove that for the right choice of λ , the discounted stock price process S^1 is a Q_{λ} -martingale. Hint: Rewrite $\sigma W_t + (\mu - r - \frac{1}{2}\sigma^2) t$ as function of $W_t^{\lambda}, t, \sigma, \mu$, and r.

Updated: December 13, 2018

$$rac{d\widetilde{S}^0_t}{\widetilde{S}^0_t} = rdt \quad ext{and} \quad rac{d\widetilde{S}^1_t}{\widetilde{S}^1_t} = \mu dt + \sigma dW_t,$$

with $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\widetilde{S}_0^0 = 1$ and $\widetilde{S}_0^1 > 0$ deterministic. Using the notation of the previous exercise, denote $Q^* := Q_{\lambda^*}$, where λ^* is the unique value of λ making Q_{λ} an equivalent martingale measure for $S^1 := \widetilde{S}^1 / \widetilde{S}^0$.

Hint: If you did not find λ^* in Exercise 13.2 (d), you can use that $\lambda^* = \frac{\mu - r}{\sigma}$.

(a) Hedge the square option, i.e., find a self-financing strategy $\varphi \cong (V_0, \vartheta)$ such that

$$V_0 + \int_0^T \vartheta_u dS_u^1 = \frac{(\widetilde{S}_T^1)^2}{\widetilde{S}_T^0}.$$

Hint: Look for a representation result under Q^* , not under P.

(b) Hedge the *inverted option*, i.e., find a self-financing strategy $\varphi \cong (\overline{V}_0, \overline{\vartheta})$ such that

$$\overline{V}_0 + \int_0^T \overline{\vartheta}_u dS^1_u = \frac{1}{\widetilde{S}^0_T \widetilde{S}^1_T}.$$