Non-Life Insurance: Mathematics and Statistics

Exercise sheet 1

Exercise 1.1 Discrete Distribution

Suppose the random variable N follows a geometric distribution with parameter $p \in(0,1)$, i.e.

$$
\mathbb{P}[N=k]= \begin{cases}(1-p)^{k-1} p, & \text { if } k \in \mathbb{N} \backslash\{0\} \\ 0, & \text { else }\end{cases}
$$

(a) Show that the geometric distribution indeed defines a probability distribution on \mathbb{R}.
(b) Let $n \in \mathbb{N} \backslash\{0\}$. Calculate $\mathbb{P}[N \geq n]$.
(c) Calculate $\mathbb{E}[N]$.
(d) Let $r<-\log (1-p)$. Calculate $M_{N}(r)=\mathbb{E}[\exp \{r N\}]$.

Remark: M_{N} is called the moment generating function of N.
(e) Calculate $\left.\frac{d}{d r} M_{N}(r)\right|_{r=0}$. What do you observe?

Exercise 1.2 Absolutely Continuous Distribution

Suppose the random variable Y follows an exponential distribution with parameter $\lambda>0$, i.e. the density f_{Y} of Y is given by

$$
f_{Y}(x)= \begin{cases}\lambda \exp \{-\lambda x\}, & \text { if } x \geq 0 \\ 0, & \text { else }\end{cases}
$$

(a) Show that the exponential distribution indeed defines a probability distribution on \mathbb{R}.
(b) Let $0<y_{1}<y_{2}$. Calculate $\mathbb{P}\left[y_{1} \leq Y \leq y_{2}\right]$.
(c) Calculate $\mathbb{E}[Y]$ and $\operatorname{Var}(Y)$.
(d) Let $r<\lambda$. Calculate $\log M_{Y}(r)=\log \mathbb{E}[\exp \{r Y\}]$.

Remark: $\log M_{Y}$ is called the cumulant generating function of Y.
(e) Calculate $\left.\frac{d^{2}}{d r^{2}} \log M_{Y}(r)\right|_{r=0}$. What do you observe?

Exercise 1.3 Chebychev's Inequality and Law of Large Numbers

Suppose that an insurance company provides insurance against bike theft. In our model a bike gets stolen with a probability of 0.1 , and in case of a theft the insurance company has to pay $1^{\prime} 000 \mathrm{CHF}$. We assume that we have n independent and identically distributed (i.i.d.) risks X_{1}, \ldots, X_{n} with

$$
X_{i}= \begin{cases}1^{\prime} 000, & \text { with probability } 0.1 \\ 0, & \text { with probability } 0.9\end{cases}
$$

for all $i=1, \ldots, n$. In this exercise we are interested in the probability

$$
p(n) \stackrel{\text { def }}{=} \mathbb{P}\left[\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right| \geq 0.1 \mu\right]
$$

of a deviation of the sample mean $\frac{1}{n} \sum_{i=1}^{n} X_{i}$ to the mean claim size $\mu=\mathbb{E}\left[X_{1}\right]$ of at least 10%, and how diversification effects this probability.
(a) Calculate μ.
(b) Suppose that $n=1$. Calculate $p(1)$.
(c) Suppose that $n=1^{\prime} 000$. Calculate $p\left(1^{\prime} 000\right)$.
(d) Apply Chebychev's inequality to derive a minimum number n of risks such that $p(n)<0.01$.
(e) What can you say about $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}$?

Exercise 1.4 Conditional Distribution

Suppose that an insurance company distinguishes between small and large claims, where a claim is called large if it exceeds a fixed threshold $\theta>0$. We use the random variable I to indicate whether a claim is small or large, i.e. we have $I=0$ for a small claim and $I=1$ for a large claim. In particular, we model $\mathbb{P}[I=0]=1-p$ and $\mathbb{P}[I=1]=p$ for some $p \in(0,1)$. Finally, we model the size of a claim that belongs to the large claims section by the random variable Y : given that we have a small claim, Y is equal to 0 almost surely and, given that we have a large claim, Y follows a Pareto distribution with threshold $\theta>0$ and tail index $\alpha>0$, i.e. the density $f_{Y \mid I=1}$ of $Y \mid I=1$ is given by

$$
f_{Y \mid I=1}(x)= \begin{cases}\frac{\alpha}{\theta}\left(\frac{x}{\theta}\right)^{-(\alpha+1)}, & \text { if } x \geq \theta \\ 0, & \text { else }\end{cases}
$$

(a) Let $y>\theta$. Calculate $\mathbb{P}[Y \geq y]$.
(b) Calculate $\mathbb{E}[Y]$.

