Non-Life Insurance: Mathematics and Statistics

Exercise sheet 10

Exercise 10.1 Simple Tariffication Methods

Suppose that a car insurance portfolio of an insurance company has been divided according to two tariff criteria:

- vehicle type: {passenger car, delivery van, truck} = $\{1,2,3\}$
- driver age: $\{21\text{-}30 \text{ years}, 31\text{-}40 \text{ years}, 41\text{-}50 \text{ years}, 51\text{-}60 \text{ years}\} = \{1,2,3,4\}$

For simplicity, we set the number of policies $v_{i,j} = 1$ for all risk classes (i,j), $1 \le i \le 3$, $1 \le j \le 4$. Moreover, we assume that we work with a multiplicative tariff structure and that we observed the following claim amounts:

	21-30y	31-40y	41-50y	51-60y
passenger car	2'000	1'800	1'500	1'600
delivery van	2'200	1'600	1'400	1'400
truck	2'500	2'000	1'700	1'600

Table 1: Observed claim amounts in the $3 \cdot 4 = 12$ risk classes.

- (a) Calculate the tariffs using the method of Bailey & Simon. In order to get a unique solution, set $\mu = \chi_{1,1} = 1$. Comment on the results.
- (b) Calculate the tariffs using the method of Bailey & Jung (i.e. the method of total marginal sums). In order to get a unique solution, set $\mu = \chi_{1,1} = 1$. Compare the results to those found in part (a).

Exercise 10.2 Log-Linear Gaussian Regression Model (R Exercise)

In this exercise we consider the same setup as in Exercise 10.1 and calculate the tariffs using the log-linear Gaussian regression model.

- (a) Determine the design matrix Z of the log-linear Gaussian regression model. Set $\beta_{1,1}=\beta_{2,1}=0$.
- (b) Write an R code that calculates the tariffs using the MLE method within the log-linear Gaussian regression model framework.
- (c) Compare the results found in part (b) to the results found in Exercise 10.1.
- (d) Is there statistical evidence that the classification into different types of vehicles could be omitted?

Exercise 10.3 Claim Frequency Modelling with GLM (R Exercise)

Suppose that a motorbike insurance portfolio of an insurance company has been divided according to three tariff criteria:

- vehicle class: {weight over 60 kg and more than two gears, other} = $\{1,2\}$
- vehicle age: {at most one year, more than one year} = $\{1,2\}$
- geographic zone: {large cities, middle-sized towns, smaller towns and countryside} = $\{1,2,3\}$

class	age	zone	volume	number of claims	claim frequency
1	1	1	100	25	0.250
1	1	2	200	15	0.075
1	1	3	500	15	0.030
1	2	1	400	60	0.150
1	2	2	900	90	0.100
1	2	3	7'000	210	0.030
2	1	1	200	45	0.225
2	1	2	300	45	0.150
2	1	3	600	30	0.050
2	2	1	800	80	0.100
2	2	2	1'500	120	0.080
2	2	3	5'000	90	0.018

Assume that we observed the following claim frequencies:

Table 2: Observed volumes, numbers of claims and claim frequencies in the $2 \cdot 2 \cdot 3 = 12$ risk classes.

- (a) Write an R code that performs a GLM analysis for the claim frequencies. Comment on the results.
- (b) Plot the observed and the fitted claim frequencies against the vehicle class, the vehicle age and the geographic zone.
- (c) Create a Tukey-Anscombe plot of the deviance residuals versus the fitted expected numbers of claims.
- (d) Is there statistical evidence that the classification into the geographic zones could be omitted?

Exercise 10.4 Tweedie's Compound Poisson Model

Let $S \sim \text{CompPoi}(\lambda v, G)$, where $\lambda > 0$ is the unknown claims frequency parameter, v > 0 the known volume and G the distribution function of a gamma distribution with known shape parameter $\gamma > 0$ and unknown scale parameter c > 0. Then, S has a mixture distribution with a point mass of $\mathbb{P}[S = 0]$ in 0 and a density f_S on $(0, \infty)$.

- (a) Calculate $\mathbb{P}[S=0]$ and f_S .
- (b) Show that S belongs to the exponential dispersion family with

$$\begin{split} w &= v, \\ \phi &= \frac{\gamma+1}{\lambda\gamma} \left(\frac{\lambda v\gamma}{c}\right)^{\frac{\gamma}{\gamma+1}}, \\ \theta &= -(\gamma+1) \left(\frac{\lambda v\gamma}{c}\right)^{-\frac{1}{\gamma+1}}, \\ \mathbf{\Theta} &= (-\infty,0), \\ b(\theta) &= \frac{\gamma+1}{\gamma} \left(\frac{-\theta}{\gamma+1}\right)^{-\gamma}, \\ c(0,\phi,w) &= 0 \quad \text{and} \\ c(x,\phi,w) &= \log \left(\sum_{n=1}^{\infty} \left[\frac{(\gamma+1)^{\gamma+1}}{\gamma} \left(\frac{\phi}{w}\right)^{-\gamma-1}\right]^n \frac{1}{\Gamma(n\gamma)n!} \, x^{n\gamma-1}\right), \quad \text{if } x > 0. \end{split}$$

Updated: November 20, 2018