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Solution 1.1 Discrete Distribution

(a) Note that N only takes values in N \ {0} and that p ∈ (0, 1). Hence, we calculate

P[N ∈ R] =
∞∑
k=1

P[N = k] =
∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k = p
1

1− (1− p) = p
1
p

= 1,

from which we can conclude that the geometric distribution indeed defines a probability
distribution on R.

(b) For n ∈ N \ {0} we get

P[N ≥ n] =
∞∑
k=n

P[N = k] =
∞∑
k=n

(1− p)k−1p = (1− p)n−1p

∞∑
k=0

(1− p)k = (1− p)n−1,

where we used that
∑∞
k=0(1− p)k = 1

p , as was shown in (a).

(c) The expectation of a discrete random variable that takes values in N \ {0} can be calculated
(if it exists) as

E[N ] =
∞∑
k=1

k · P[N = k].

Thus, we get

E[N ] =
∞∑
k=1

k(1−p)k−1p =
∞∑
k=0

(k+1)(1−p)kp =
∞∑
k=0

k(1−p)kp+
∞∑
k=0

(1−p)kp = (1−p)E[N ]+1,

where we used that
∑∞
k=0(1− p)kp = 1, as was shown in (a). We conclude that E[N ] = 1

p .

(d) Let r ∈ R. Then, we calculate

E[exp{rN}] =
∞∑
k=1

exp{rk} · P[N = k]

=
∞∑
k=1

exp{rk}(1− p)k−1p

= p exp{r}
∞∑
k=1

[(1− p) exp{r}]k−1

= p exp{r}
∞∑
k=0

[(1− p) exp{r}]k.

Since (1− p) exp{r} is strictly positive, the sum on the right hand side converges if and only
if (1 − p) exp{r} < 1, which is equivalent to r < − log(1 − p). Hence, E[exp{rN}] exists if
and only if r < − log(1− p), and in this case we have

MN (r) = E[exp{rN}] = p exp{r} 1
1− (1− p) exp{r} = p exp{r}

1− (1− p) exp{r} .
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(e) For r < − log(1− p) we have

d

dr
MN (r) = d

dr

p exp{r}
1− (1− p) exp{r}

= p exp{r}[1− (1− p) exp{r}] + p exp{r}(1− p) exp{r}
[1− (1− p) exp{r}]2

= p exp{r}
[1− (1− p) exp{r}]2 .

Hence, we get

d

dr
MN (r)

∣∣
r=0 = p exp{0}

[1− (1− p) exp{0}]2 = p

[1− (1− p)]2 = p

p2 = 1
p
.

We observe that d
drMN (r)

∣∣
r=0 = E[N ], which holds in general for all random variables for

which the moment generating function exists in an interval around 0.

Solution 1.2 Absolutely Continuous Distribution

(a) We calculate

P[Y ∈ R] =
∫ ∞
−∞

fY (x) dx =
∫ ∞

0
λ exp{−λx} dx = [− exp{−λx}]∞0 = [−0− (−1)] = 1,

from which we can conclude that the exponential distribution indeed defines a probability
distribution on R.

(b) For 0 < y1 < y2 we calculate

P[y1 ≤ Y ≤ y2] =
∫ y2

y1

fY (x) dx

=
∫ y2

y1

λ exp{−λx} dx

= [− exp{−λx}]y2
y1

= exp{−λy1} − exp{−λy2}.

(c) The expectation and the second moment of an absolutely continuous random variable can be
calculated (if they exist) as

E[Y ] =
∫ ∞
−∞

xfY (x) dx and E[Y 2] =
∫ ∞
−∞

x2fY (x) dx.

Thus, using partial integration, we get

E[Y ] =
∫ ∞

0
xλ exp{−λx} dx

= [−x exp{−λx}]∞0 +
∫ ∞

0
exp{−λx} dx

= 0 +
[
− 1
λ

exp{−λx}
]∞

0

= 1
λ
.
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The variance Var(Y ) can be calculated as

Var(Y ) = E[Y 2]− E[Y ]2 = E[Y 2]− 1
λ2 .

For the second moment E[Y 2] we get, again using partial integration,

E[Y 2] =
∫ ∞

0
x2λ exp{−λx} dx

=
[
−x2 exp{−λx}

]∞
0 +

∫ ∞
0

2x exp{−λx} dx

= 0 + 2
λ
E[Y ]

= 2
λ2 ,

from which we can conclude that

Var(Y ) = 2
λ2 −

1
λ2 = 1

λ2 .

Note that for the exponential distribution both the expectation and the variance exist. The
reason is that exp{−λx} goes much faster to 0 than x or x2 go to infinity, for all λ > 0.

(d) Let r ∈ R. Then, we calculate

E[exp{rY }] =
∫ ∞

0
exp{rx}λ exp{−λx} dx =

∫ ∞
0

λ exp{(r − λ)x} dx.

The integral on the right hand side and therefore also E[exp{rY }] exist if and only if r < λ.
In this case we have

MY (r) = E[exp{rY }] = λ

r − λ
[exp{(r − λ)x}]∞0 = λ

r − λ
(0− 1) = λ

λ− r

and therefore
logMY (r) = log

(
λ

λ− r

)
.

(e) For r < λ we have

d2

dr2 logMY (r) = d2

dr2 log
(

λ

λ− r

)
= d2

dr2 [log(λ)− log(λ− r)] = d

dr

1
λ− r

= 1
(λ− r)2 .

Hence, we get
d2

dr2 logMY (r)|r=0 = 1
(λ− 0)2 = 1

λ2 .

We observe that d2

dr2 logMY (r)|r=0 = Var(Y ), which holds in general for all random variables
for which the moment generating function exists in an interval around 0.
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Solution 1.3 Chebychev’s Inequality and Law of Large Numbers

(a) We have µ = E[X1] = 1’000 · 0.1 = 100, and 0.1µ = 10.

(b) For n = 1 we get∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ = |X1 − 100| =
{

900, with probability 0.1,
100, with probability 0.9.

As both values 900 and 100 are bigger than 10, we conclude that p(1) = 1. In particular, if we
only have n = 1 risk in our portfolio, then with probability 1 the corresponding claim amount
deviates from the mean claim size by at least 10%.

(c) For n ∈ N we can write

p(n) = P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]

= 1− P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ < 0.1µ
]

= 1− P

[
−0.1µ < 1

n

n∑
i=1

Xi − µ < 0.1µ
]

= 1− P

[
0.9nµ <

n∑
i=1

Xi < 1.1nµ
]

For n = 1’000 we get

p(1’000) = 1− P

[
90’000 <

1’000∑
i=1

Xi < 110’000
]

= 1− P [90 < number of bikes stolen < 110]

= 1−
109∑
k=91

(
1’000
k

)
(0.1)k (0.9)1’000−k

≈ 0.32.

Thus, if we have n = 1’000 risks in our portfolio, then with probability 0.32 the sample
mean of the claim amounts deviates from the mean claim size by at least 10%. In particular,
diversification leads to a reduction of this probability.

(d) As

E

[
1
n

n∑
i=1

Xi

]
= 1
n

n∑
i=1

E [Xi] = E[X1] = µ,

Chebyshev’s inequality leads to

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]
≤

Var
( 1
n

∑n
i=1 Xi

)
(0.1µ)2 .

Using the independence of X1, . . . , Xn, we get

Var
(

1
n

n∑
i=1

Xi

)
= 1
n2

n∑
i=1

Var (Xi) = 1
n
Var(X1) = 1

n
E
[
(X1 − µ)2] = 1

n

(
9002 · 0.1 + 1002 · 0.9

)
= 90’000

n
.

This implies

P

[∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ 0.1µ
]
≤ 90’000
n(0.1µ)2 = 900

n
.
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We have
900
n

< 0.1 ⇐⇒ n > 9’000.

This implies that Chebyshev’s inequality guarantees that if we have more than 9’000 risks,
then the probability that the sample mean of the claim amounts deviates from the mean
claim size by at least 10% is smaller than 1%.

(e) We have that X1, X2, ... are i.i.d. and that E[|X1|] = E[X1] = µ < ∞. Thus, we can apply
the strong law of large numbers, and we get

lim
n→∞

1
n

n∑
i=1

Xi −→ E[X1] = µ = 10, P− a.s.

Solution 1.4 Conditional Distribution

(a) For y > θ > 0 we get

P[Y ≥ y] = P[Y ≥ y, I = 0] + P[Y ≥ y, I = 1]
= P[Y ≥ y|I = 0]P[I = 0] + P[Y ≥ y|I = 1]P[I = 1]
= 0 · (1− p) + P[Y ≥ y|I = 1] · p
= p · P[Y ≥ y|I = 1],

since Y |I = 0 is equal to 0 almost surely and thus P[Y ≥ y|I = 0] = 0. Since Y |I = 1 ∼
Pareto(θ, α), we can calculate

P[Y ≥ y|I = 1] =
∫ ∞
y

fY |I=1(x) dx =
∫ ∞
y

α

θ

(x
θ

)−(α+1)
dx =

[
−
(x
θ

)−α]∞
y

=
(y
θ

)−α
.

We conclude that
P[Y ≥ y] = p

(y
θ

)−α
.

(b) Using that Y |I = 0 is equal to 0 almost surely and thus E[Y |I = 0] = 0, we get

E[Y ] = E[Y ·1{I=0}]+E[Y ·1{I=1}] = E[Y |I = 0]P[I = 0]+E[Y |I = 1]P[I = 1] = p·E[Y |I = 1].

Since Y | I = 1 ∼ Pareto(θ, α), we can calculate

E[Y |I = 1] =
∫ ∞
−∞

xfY |I=1(x) dx =
∫ ∞
θ

x
α

θ

(x
θ

)−(α+1)
dx = αθα

∫ ∞
θ

x−α dx

We see that the integral on the right hand side and therefore also E[Y ] exist if and only if
α > 1. In this case we get

E[Y |I = 1] = αθα
[
− 1
α− 1x

−(α−1)
]∞
θ

= αθα
1

α− 1θ
−(α−1) = θ

α

α− 1 .

We conclude that, if α > 1, we get

E[Y ] = pθ
α

α− 1 .

If 0 < α ≤ 1, E[Y ] does not exist.
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