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Solution 2.1 Gaussian Distribution

(a) The moment generating function of a+ bX can be calculated as

Ma+bX(r) = E [exp {r(a+ bX)}] = exp {ra}E [exp {rbX}] = exp {ra}MX(rb),

for all r ∈ R. Using the formula for the moment generating function of X given on the exercise
sheet, we get

Ma+bX(r) = exp {ra} exp
{
rbµ+ (rb)2σ2

2

}
= exp

{
r(a+ bµ) + r2b2σ2

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation a + bµ and variance b2σ2. Since the moment generating function uniquely
determines the distribution, we conclude that

a+ bX ∼ N (a+ bµ, b2σ2).

(b) Using the independence of X1, . . . , Xn, the moment generating function of Y =
∑n
i=1 Xi can

be calculated as

MY (r) = E [exp {rY }] = E

[
exp

{
r

n∑
i=1

Xi

}]
=

n∏
i=1

E [exp {rXi}] =
n∏
i=1

MXi
(r),

for all r ∈ R. Using the formula for the moment generating function of a Gaussian random
variable given on the exercise sheet, we get

MY (r) =
n∏
i=1

exp
{
rµi + r2σ2

i

2

}
= exp

{
r

n∑
i=1

µi +
r2∑n

i=1 σ
2
i

2

}
,

which is equal to the moment generating function of a Gaussian random variable with
expectation

∑n
i=1 µi and variance

∑n
i=1 σ

2
i . Since the moment generating function uniquely

determines the distribution, we conclude that
n∑
i=1

Xi ∼ N

(
n∑
i=1

µi,

n∑
i=1

σ2
i

)
.

Solution 2.2 Maximum Likelihood and Hypothesis Test

(a) Since log Y1, . . . , log Y8 are independent random variables, the joint density fµ,σ2(x1, . . . , x8)
of log Y1, . . . , log Y8 is given by product of the marginal densities of log Y1, . . . , log Y8. We
have

fµ,σ2(x1, . . . , x8) =
8∏
i=1

1√
2πσ

exp
{
−1

2
(xi − µ)2

σ2

}
,

since log Y1, . . . , log Y8 are Gaussian random variables with mean µ and variance σ2.
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(b) By taking the logarithm, we get

log fµ,σ2(x1, . . . , x8) =
8∑
i=1
− log

(√
2π
)
− log(σ)− 1

2
(xi − µ)2

σ2

= −8 log
(√

2π
)
− 8 log(σ)− 1

2σ2

8∑
i=1

(xi − µ)2.

(c) We have log fµ,σ2(x1, . . . , x8) < −8 log(σ) for all µ ∈ R. Hence, independently of µ,
log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → ∞. Moreover, since for example x1 6= x2, there ex-
ists a c > 0 with

∑8
i=1(xi − µ)2 > c and thus log fµ,σ2(x1, . . . , x8) < −8 log(σ) − c

2σ2 for
all µ ∈ R. Since c

2σ2 goes much faster to ∞ than 8 log(σ) goes to −∞ if σ2 → 0, we have
log fµ,σ2(x1, . . . , x8) → −∞ if σ2 → 0, independently of µ. Finally, if σ2 ∈ [c1, c2] for some
0 < c1 < c2, we have log fµ,σ2(x1, . . . , x8) < − 1

2c2

∑8
i=1(xi − µ)2. Hence, independently

of the value of σ2 in the interval [c1, c2], log fµ,σ2(x1, . . . , x8) → −∞ if |µ| → ∞. Since
log fµ,σ2(x1, . . . , x8) is continuous in µ and σ2, we can conclude that it attains its global
maximum somewhere in R× R>0. Thus µ̂ and σ̂2 as defined on the exercise sheet have to
satisfy the first order conditions

∂

∂µ
log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0 and

∂

∂(σ2) log fµ,σ2(x1, . . . , x8)|(µ,σ2)=(µ̂,σ̂2) = 0.

We calculate
∂

∂µ
log fµ,σ2(x1, . . . , x8) = 1

σ2

8∑
i=1

(xi − µ),

which is equal to 0 if and only if µ = 1
8
∑8
i=1 xi. Moreover, we have

∂

∂(σ2) log fµ,σ2(x1, . . . , x8) = − 8
2σ2 + 1

2σ4

8∑
i=1

(xi − µ)2 = 1
2σ2

[
−8 + 1

σ2

8∑
i=1

(xi − µ)2

]
,

which is equal to 0 if and only if σ2 = 1
8
∑8
i=1(xi − µ)2. Since there is only tuple in R× R>0

that satisfies the first order conditions, we conclude that

µ̂ = 1
8

8∑
i=1

xi = 7 and σ̂2 = 1
8

8∑
i=1

(xi − µ̂)2 = 1
8

8∑
i=1

(xi − 7)2 = 7.

Note that the MLE σ̂2 (considered as an estimator) is not unbiased. Indeed, if we replace
x1, . . . , x8 by independent Gaussian random variables X1, . . . , X8 with expectation µ ∈ R
and variance σ2 > 0 and write µ̂ for 1

8
∑8
i=1 Xi, we can calculate

E[σ̂2] = E[σ̂2(X1, . . . , X8)] = E

[
1
8

8∑
i=1

(Xi − µ̂)2

]
= 1

8E
[ 8∑
i=1

(X2
i − 2Xiµ̂+ µ̂2)

]
.

By noting that
∑8
i=1 Xi = 8µ̂ and that E[X2

1 ] = · · · = E[X2
8 ], we get

E[σ̂2] = 1
8E
[ 8∑
i=1

X2
i − 2 · 8 · µ̂2 + 8µ̂2

]
= E[X2

1 ]− E[µ̂2] = σ2 + E[X1]2 −Var(µ̂)− E[µ̂]2.
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By inserting

Var(µ̂) = Var
(

1
8

8∑
i=1

Xi

)
=
(

1
8

)2 8∑
i=1

Var(Xi) = 1
8σ

2 and

E[µ̂]2 = E

[
1
8

8∑
i=1

Xi

]2

=
(

1
8

8∑
i=1

E[Xi]
)2

= E[X1]2,

we can conclude that

E[σ̂2] = σ2 + E[X1]2 − 1
8σ

2 − E[X1]2 = 7
8σ

2 6= σ2,

i.e. σ̂2 is not unbiased.

(d) Since our data is assumed to follow a Gaussian distribution and the variance is unknown, we
perform a t-test. The test statistic is given by

T = T (log Y1, . . . , log Y8) =
√

8
1
8
∑8
i=1 log Yi − µ√

S2
,

where

S2 = 1
7

8∑
i=1

(
log Yi −

1
8

8∑
i=1

log Yi

)2

.

Under H0, T follows a Student-t distribution with 7 degrees of freedom. With the data given
on the exercise sheet, the random variable S2 attains the value

1
7

8∑
i=1

(
xi −

1
8

8∑
i=1

xi

)2

= 1
7

8∑
i=1

(xi − 7)2 = 8.

Thus, for T we get the observation

T (x1, . . . , x8) =
√

8
1
8
∑8
i=1 xi − µ√
S2

=
√

87− 6√
8

= 1,

where we use that µ = 6 under H0. Now the probability under H0 to observe a T that is at
least as extreme as the observation 1 we got above is

P[|T | ≥ 1] = P[T ≥ 1] + P[T ≤ −1] = 1− P[T < 1] + 1− P[T < 1] = 2− 2P[T < 1],

where we used the symmetry of the Student-t distribution around 0. The probability P[T < 1]
is approximately 0.83, and the p-value is given by

P[|T | ≥ 1] = 2− 2P[T < 1] ≈ 2− 2 · 0.83 = 0.34.

This p-value is fairly high, and we conclude that we can not reject the null hypothesis, for
example, at significance level of 5% or 1%.

Solution 2.3 X 2-Distribution

(a) Let r ∈ R. The moment generating function MXk
of Xk can be calculated as follows

MXk
(r) = E [exp{rXk}] =

∫
R

exp{rx}fXk
(x) dx

=
∫ ∞

0
exp{rx} 1

2k/2Γ(k/2)
xk/2−1 exp{−x/2} dx

=
∫ ∞

0

1
2k/2Γ(k/2)

xk/2−1 exp{−x(1/2− r)} dx.
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This integral (and consequently the moment generating function) exists if and only if r < 1/2.
Let r < 1/2. Then, we use the substitution

u = x(1/2− r), dx = 1
1/2− r du.

We get

MXk
(r) =

∫ ∞
0

1
2k/2Γ(k/2)

uk/2−1
(

1
1/2− r

)k/2−1
exp{−u} 1

1/2− r du

= 1
2k/2

(
1

1/2− r

)k/2 1
Γ(k/2)

∫ ∞
0

uk/2−1 exp{−u} du

=
(

1
1− 2r

)k/2
,

where we used the definition of the gamma function

Γ(z) =
∫ ∞

0
uz−1 exp{−u} du, for z ∈ R.

(b) For all r < 1/2 the moment generating function MZ2 of Z2 is given by

MZ2(r) = E
[
exp

{
rZ2}] =

∫ ∞
−∞

exp{rx2} 1√
2π

exp
{
−x

2

2

}
dx

= (1− 2r)−1/2
∫ ∞
−∞

1√
2π(1− 2r)−1/2

exp
{
− x2

2(1− 2r)−1

}
dx

=
(

1
1− 2r

)1/2

= MX1(r),

where the second to last equality holds true since we integrate the density of a normal
distribution with mean 0 and variance (1 − 2r)−1. Since the moment generating function
uniquely determines the distribution, we conclude that Z2 (d)= X1.

(c) Using that Z1, . . . , Zk are i.i.d., the moment generating function MY of Y def=
∑k
i=1 Z

2
i is

given by

MY (r) = E

[
exp

{
r

k∑
i=1

Z2
i

}]
=

k∏
i=1

E
[
exp

{
rZ2

i

}]
=
(
MZ2

1
(r)
)k

=
(

1
1− 2r

)k/2
= MXk

(r),

for all r < 1/2. Since the moment generating function uniquely determines the distribution,
we conclude that

∑k
i=1 Z

2
i

(d)= Xk.

Solution 2.4 Variance Decomposition
By definition of the random variable X, the second moments exist. Hence, we have

E[Var(X|G)] = E
[
E[X2|G]− (E[X|G])2] = E[X2]− E

[
(E[X|G])2]

and
Var(E[X|G]) = E

[
(E[X|G])2]− E [E[X|G]]2 = E

[
(E[X|G])2]− E[X]2.

Combining these two results, we get

E[Var(X|G)] + Var(E[X|G]) = E[X2]− E[X]2 = Var(X).
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