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Solution 3.1 No-Claims Bonus

(a) We define the following events:

A = {“no claims in the last six years”},
B = {“no claims in the last three years but at least one claim in the last six years”},
C = {“at least one claim in the last three years”}.

Note that since the events A, B and C are disjoint and cover all possible outcomes, we have

P[A] + P[B] + P[C] = 1,

i.e. it is sufficient to calculate two out of the three probabilities. Since the calculation of
P[B] is slightly more involved, we will look at P[A] and P[C]. Let N1, . . . , N6 be the number
of claims of the last six years of our considered car driver, where N6 corresponds to the
most recent year. By assumption, N1, . . . , N6 are independent Poisson random variables with
frequency parameter λ = 0.2. Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0] =
6∏
i=1

P [Ni = 0] =
6∏
i=1

exp{−λ} = exp{−6λ} = exp{−1.2}

and, similarly,

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− exp{−3λ} = 1− exp{−0.6}.

For the event B we get

P[B] = 1− P[A]− P[C] = 1− exp{−1.2} − (1− exp{−0.6}) = exp{−0.6} − exp{−1.2}.

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]
= 0.8 · exp{−1.2}+ 0.9 · (exp{−0.6} − exp{−1.2}) + 1− exp{−0.6}
≈ 0.915.

If s denotes the surcharge on the premium, then it has to satisfy the equation

q(1 + s) · premium = premium,

which leads to
s = 1

q
− 1.

We conclude that the surcharge on the premium is given by approximately 9.3%.
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(b) We use the same notation as in (a). Since this time the calculation of P[B] is considerably more
involved, we again look at P[A] and P[C]. By assumption, conditionally given Θ, N1, . . . , N6
are independent Poisson random variables with frequency parameter Θλ, where λ = 0.2.
Therefore, we can calculate

P[A] = P [N1 = 0, . . . , N6 = 0]
= E [P [N1 = 0, . . . , N6 = 0|Θ]]

= E

[ 6∏
i=1

P [Ni = 0|Θ]
]

= E

[ 6∏
i=1

exp{−Θλ}
]

= E [exp{−6Θλ}]
= MΘ(−6λ),

where MΘ denotes the moment generating function of Θ. Since Θ ∼ Γ(1, 1), MΘ is given by

MΘ(r) = 1
1− r ,

for all r < 1, which leads to
P[A] = 1

1 + 6λ = 1
2.2 .

Similarly, we get

P[C] = 1− P[Cc] = 1− P [N4 = 0, N5 = 0, N6 = 0] = 1− 1
1 + 3λ = 1− 1

1.6 = 0.6
1.6 .

For the event B we get

P[B] = 1− P[A]− P[C] = 1− 1
2.2 −

0.6
1.6 = 1

1.6 −
1

2.2 .

Thus, the expected proportion q of the premium that is still paid after the grant of the
no-claims bonus is given by

q = 0.8 · P[A] + 0.9 · P[B] + 1 · P[C]

= 0.8 · 1
2.2 + 0.9 ·

(
1

1.6 −
1

2.2

)
+ 0.6

1.6
≈ 0.892.

We conclude that the surcharge s on the premium is given by

s = 1
q
− 1 ≈ 12.1%,

which is considerably bigger than in (a). The reason is that in (b) we introduce dependence
between the claim counts of the individual years of the considered car driver. This increases
the probability of having no claims in the last six years, and decreases the expected proportion
q of the premium that is still paid after the grant of the no-claims bonus.
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Solution 3.2 Claims Count Distribution
The sample mean and the sample variance of the observed numbers of claims N1, . . . , N10 are given
by

µ̂
def= 1

10

10∑
t=1

Nt = 21.3 and σ̂2 def= 1
9

10∑
t=1

(Nt − µ̂)2 ≈ 109.1.

We have
σ̂2 ≈ 5µ̂,

which suggests Var(N1) > E[N1]. In such a case we would choose a negative binomial distribution
for modeling the number of claims, as it is the only distribution among the three distributions
mentioned which allows the variance to exceed the expectation.

Solution 3.3 Central Limit Theorem
Let σ2 be the variance of the claim sizes and x > 0. We have

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
= P

[
1
n

n∑
i=1

Yi − µ <
x√
n

]
− P

[
1
n

n∑
i=1

Yi − µ ≤ −
x√
n

]

= P
[√

n
1
n

∑n
i=1 Yi − µ
σ

<
x

σ

]
− P

[√
n

1
n

∑n
i=1 Yi − µ
σ

≤ −x
σ

]
= P

[
Zn <

x

σ

]
− P

[
Zn ≤ −

x

σ

]
,

where
Zn =

√
n

1
n

∑n
i=1 Yi − µ
σ

.

According to the Central Limit Theorem, Zn converges in distribution to a standard Gaussian
random variable. Hence, if we write Φ for the distribution function of a standard Gaussian random
variable, we have the approximation

P

[∣∣∣∣ 1n
n∑
i=1

Yi − µ
∣∣∣∣ < x√

n

]
≈ Φ

(x
σ

)
− Φ

(
−x
σ

)
.

On the one hand, as we are interested in a probabilty of at least 95%, we have to choose x > 0
such that

Φ
(x
σ

)
− Φ

(
−x
σ

)
= 0.95.

Using Φ(− x
σ ) = 1− Φ( xσ ) and Φ−1(0.975) = 1.96, this implies that

x

σ
= 1.96.

It follows that
x = 1.96 · σ = 1.96 ·Vco(Y1) · µ = 1.96 · 4 · µ. (1)

On the other hand, as we want the deviation of the empirical mean from µ to be less than 1%, we
set

x√
n

= 0.01 · µ,

which implies

n = x2

0.012 · µ2 . (2)

Combining (1) and (2), we conclude that

n = (1.96 · 4 · µ)2

0.012 · µ2 = 1.962 · 42 · 10’000 = 614’656.
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Solution 3.4 Compound Binomial Distribution

(a) Let S̃ ∼ CompBinom(ṽ, p̃, G̃) with the random variable Ỹ1 having distribution function G̃
and moment generating function MỸ1

. Then, by Proposition 2.6 of the lecture notes, the
moment generating function MS̃ of S̃ is given by

MS̃(r) =
(
p̃MỸ1

(r) + 1− p̃
)ṽ
,

for all r ∈ R for which MỸ1
is defined. We calculate the moment generating function of Slc

and show that it is exactly of the form given above. Since Slc ≥ 0 almost surely, its moment
generating function is defined at least for all r < 0. Thus, for r < 0, we have

MSlc(r) = E

[
exp

{
r

N∑
i=1

Yi 1{Yi>M}

}]

= E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}]

= E

[
E

[
N∏
i=1

exp
{
rYi 1{Yi>M}

}∣∣∣∣∣N
]]

= E

[
N∏
i=1

E
[
exp

{
rYi 1{Yi>M}

}]]
,

where in the third equality we used the tower property of conditional expectation and in the
fourth equality the independence between N and Yi. For the inner expectation we get

E
[
exp

{
rYi 1{Yi>M}

}]
= E

[
exp {rYi} · 1{Yi>M} + 1{Yi≤M}

]
= E [exp {rYi} |Yi > M ]P[Yi > M ] + P[Yi ≤M ]
= E [exp {rYi} |Yi > M ] [1−G(M)] +G(M).

First, note that the distribution function of the random variable Yi|Yi > M is Glc. Moreover,
since Yi|Yi > M is greater than 0 almost surely, its moment generating function MY1|Y1>M is
defined for all r < 0. Thus, we can write

E
[
exp

{
rYi 1{Yi>M}

}]
= MY1|Y1>M (r)[1−G(M)] +G(M).

Hence, we get

MSlc(r) = E

[
N∏
i=1

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)]
= E

[(
MY1|Y1>M (r)[1−G(M)] +G(M)

)N]
= E

[
exp

{
N log

(
MY1|Y1>M (r)[1−G(M)] +G(M)

)}]
= MN (ρ),

where MN is the moment generating function of N and

ρ = log
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
.

Since we have N ∼ Binom(v, p), MN (r) is given by

MN (r) = (p exp{r}+ 1− p)v.

Updated: October 2, 2018 4 / 5



Non-Life Insurance: Mathematics and Statistics, D-MATH
HS 2018 Solution sheet 3

Therefore, we get

MSlc(r) = [p
(
MY1|Y1>M (r)[1−G(M)] +G(M)

)
+ 1− p]v

= (p[1−G(M)]MY1|Y1>M (r) + 1− p[1−G(M)])v.

Applying Lemma 1.3 of the lecture notes, we conclude that Slc ∼ CompBinom(ṽ, p̃, G̃) with
ṽ = v, p̃ = p[1−G(M)] and G̃ = Glc.

(b) In (a) we showed that the number of claims of the compound distribution Slc has a binomial
distribution with parameters v and 1−G(M). In particular, there is a positive probability
that we have v claims with Yi > M . Now suppose that Ssc > 0. Then, we know that there is
an i ∈ {1, . . . , N} with Yi ≤M . In particular, this claim cannot be part of Slc and there is
zero probability that we have v claims with Yi > M . This explains why Ssc and Slc cannot be
independent. However, note that with the Poisson distribution as claims count distribution
such a split in small and large claims leads to independent compound distributions, see
Theorem 2.14 of the lecture notes.

Updated: October 2, 2018 5 / 5


